
Speeding up the SPB Computation
Jérôme Chiabaut, Nigel Bragg
November, 2009

2

Motivation

> SPB eliminates signalling and its undesirable attributes
from per I-SID shortest path tree installation by :
• use of computed Group Addresses = fn (node nickname, I-SID)
• computation of trees for “all pairs shortest path”

> “All pairs shortest path” (APSP) is computationally more
intensive than traditional SPF using a single Dijkstra :
• and despite 7 – 8 generations of Moore’s Law since Dijkstra was

first deployed in production networks, concern is still expressed
over the computational implications of APSP

> This document presents work showing how the
computation load of APSP may be reduced :
• with benefits especially for the most numerous, smallest, and likely

most “computationally-challenged” nodes at the network edge

3

SPB Computation – Classic Method

> For every node in the network do:
• Compute SPT: run Dijkstra for the node (the root of the spanning tree)
• Prune paths: keep only the shortest paths that go through the node

performing the computation
• I-SID computation: compute the intersection of the set of I-SIDs for

which the root node transmits with the set of I-SIDs for which the paths’
endpoints receive

> Pluses:
• Simple, elegant, and quite efficient when most paths are not pruned
• Best possible worst-case performance

> Minuses:
• Most of the paths computed by some nodes, most notably edge nodes,

end up being pruned (because they are not offering transit)
• For these nodes, the SPB computation can be very expensive relative

to the amount of forwarding state produced

4

Simple Observations

> If we know that a node X in on the shortest path between nodes
A & B, then the shortest path between A & B is the concatenation of
the shortest paths from X to A & X to B

• there is no need to compute APSP if there is another way to know which shortest
paths go through the node of interest (X) and which ones don’t

> We use the symmetry of shortest paths to reduce the number of
nodes we need to consider

• First, with a single SPF, we can divide the network into “partitions” whereby
connectivity within a partition in known to not transit “X”

• So, we need not consider the nodes in the largest partition, and only compute SPF
for the nodes in the remaining partitions, and still have a complete solution for “X”

> But we can go further: it can be possible to prove, for some pairs of
partitions, that inter-partition shortest paths do not transit “X”

• The symmetry and downstream congruency properties of shortest path with tie
breaking allows us to infer, from SPF computations rooted on immediate peers,
that the shortest path between any nodes in a pair of partitions does not transit “X”
(when the shortest path between the immediate peers does not transit “X”)

• This allows us to coalesce partitions together prior to removing the largest from
consideration; In some cases the “coalesced” partition will be 100% of the network

5

Step 1: Partitioning

> The node computes its own spanning tree, and for each
immediate neighbour computes the set of nodes in the
branch of the its spanning tree which transit the neighbour
• This partitions the set of nodes into the node itself and a set of

nodes for each of its neighbours (some of which may be empty)

> The SPB problem can be solved by computing SPF
for all the nodes except those in the largest partition
• All paths of interest have their endpoints in different partitions

• paths within a partition can never get closer to the node than
its immediate neighbour, by construction of the “partition”,

• so paths of interest can all be found by computing SPF for the
nodes of all partitions but one, and using the symmetry property
to extract the paths from the partition not explicitly computed;

• clearly, we avoid the largest partition to minimise computation

6

The Algorithm in Pictures – Example 1

04

06 05

03

01 02

17

15

18 16

10

0826

24

07

09

23

25

11

1321

19

2014

22 12

7

Example 1 – Step 1: Partitioning

04

06 05

03

01 02

17

15

18 16

10

0826

24

07

09

23

25

11

1321

19

2014

22 12

8

Step 2: Coalescing

> If the shortest path between two of the node’s neighbours
does not go through the node then all the shortest paths
between the two partitions do not go through the node
• each of the partitions produced by the spanning tree is rooted at

one of the node’s neighbours

> Two such partitions that are directly connected can be
coalesced into a larger partition
• and three partitions for which the three members are pair-wise

directly connected can be coalesced, etc…

> The goal is to coalesce partitions in a way that makes the
largest partition as large as possible

9

Example 1 – Step 2: Coalescing

04

06 05

03

01 02

17

15

18 16

10

0826

24

07

09

23

25

11

1321

19

2014

22 12

10

Example 1 – Step 2: Coalescing (Cont’d)

04

06 05

03

01 02

17

15

18 16

10

0826

24

07

09

23

25

11

1321

19

2014

22 12

11

Step 3: Computing Shortest Paths

> Shortest paths going through the node of interest
necessarily have their endpoints in different partitions
• by construction shortest paths within partitions are

necessarily shorter than paths going through the node

> Shortest paths of interest can be found by computing
SPF for the nodes of all the partitions but the largest
one
• paths originating in the excluded partition can be found by

reversing paths terminating there

We have called this method
“Some Pairs Shortest Path” (SPSP)

12

Example 1 – Step 3: Computing
Shortest Paths

> All the neighbours’ partitions have been coalesced into
one: not a single shortest path goes through node 2
• 4 x Dijkstras required by the algorithm (nodes 2, 4, 5, and 6);
• A shorter proof exists with only 2 x Dijkstras (nodes 1 & 2),

• but since 1 & 2 are not immediate neighbours the algorithm
did not find this

> The same algorithm produces very different results for
node 1:
• The coalescing phase has no effect (because the shortest path

connectivity between all partitions transits node 1)
• The largest partition (node 3) has 11 nodes in it
• 15 Dijkstras needed instead of 26

13

The Algorithm in Pictures – Example 2

R01

R02

R03

R06

R05

R04

R17

R16

R15

R18

R13

R14

R23

R22

R21

R24

R19

R20

R12 R11

R07 R10

R08 R09

14

Example 2 – Step 1: Partitioning

R01

R02

R03

R06

R05

R04

R17

R16

R15

R18

R13

R14

R23

R22

R21

R24

R19

R20

R12 R11

R07 R10

R08 R09

15

Example 2 – Step 2: Coalescing

R01

R02

R03

R06

R05

R04

R17

R16

R15

R18

R13

R14

R23

R22

R21

R24

R19

R20

R12 R11

R07 R10

R08 R09

16

Example 2 – Step 3: Computing
Shortest Paths

> All the core nodes’ partitions have been coalesced into
one
• 6 x Dijkstras are required by the algorithm (nodes 1 to 6)

> The edge nodes’ partitions can’t be coalesced because
their shortest path to the core does through node 1:
• Another 6 x Dijkstras are required to complete the computation

(nodes 11, 12, 17, 17, 23, and 24)

17

Performance Results – Core Node

16.30 ms21.40 ms5,80820,000700200Light mesh
59.80 ms86.50 ms4,30219,6001,568392Light mesh
274.6 ms411.2 ms2,89720,0003,600800Light mesh
19.10 ms19.20 ms8,29620,000460200Heavy mesh
46.90 ms47.60 ms6,35619,600924392Heavy mesh
162.5 ms163.1 ms4,86120,0001,920800Heavy mesh

14.0 ms18.10 ms8,47120,000550200Meshed core
21.80 ms39.80 ms6,47019,6001,106392Meshed core
28.10 ms31.20 ms15,70220,300413203Two-Tier
63.30 ms74.70 ms15,43220,100807402Two-Tier
135.8 ms224.3 ms14,19620,0751,639803Two-Tier

APSPFDB sizeLinks Topology Nodes I-SIDs SPSP

The new method is never slower than APSP

18

Performance Results – Edge Node

1.10 ms16.0 ms56020,000700200Light mesh
2.10 ms78.8 ms28319,6001,568392Light mesh
5.60 ms401.0 ms15720,0003,600800Light mesh
1.10 ms8.20 ms56020,000460200Heavy mesh
1.70 ms31.70 ms28319,600924392Heavy mesh
4.80 ms137.8 ms15720,0001,920800Heavy mesh

1.0 ms6.30 ms56020,000550200Meshed core
1.70 ms23.10 ms28319,6001,106392Meshed core
1.10 ms8.40 ms60920,300413203Two-Tier
1.80 ms30.90 ms30020,100807402Two-Tier
4.90 ms139.1 ms15220,0751,639803Two-Tier

APSPFDB sizeLinks Topology Nodes I-SIDs SPSP

The new method can be much faster than APSP

19

Conclusion

> The proposed algorithm reduces the number of Dijkstras
that must be performed during the SPB computation
• Effectiveness depends upon the topology and the position of the

node in that topology

> This algorithm is very effective in the following cases:
• Nodes with very few neighbours (e.g. dual-connected nodes)
• Nodes that are close to the network periphery (e.g. smaller nodes)
• Nodes in a lightly meshed core

> It is most beneficial for high volume and cost sensitive edge
nodes that offer SPB transit but need compute only a few trees
• Core nodes’ computation could be reduced by about 50% in some

cases, i.e. one Moore’s Law generation

> This algorithm is a significant implementation optimisation
of SPB which enhances network scaling

20

Backup Slides - topologies

21

Topologies – Meshed Cores

> Topologies composed of a meshed core surrounded by dual-homed
edges
• Key parameters are the size of the mesh and the size and degree of

meshiness of the core
> Lightly meshed large cores

• Size/2 core routers with 2(log2(Size)-2) trunks and 2 lines each
• Size/2 edge routers dual homed (2 links)
• Size*Log2(Size)/2 point-to-point links
• Size of core routers’ neighbourhood of core nodes grows a log(Size)
• Network diameter increases very slowly with size (4-6 typical)

> Fully meshed small cores
• sqrt(2*Size) core routers with 2*sqrt(Size)-1 trunks and 2*sqrt(Size)-2 lines

each
• Size-sqrt(2*Size) edge routers dual homed (2 links)
• 3*Size-5/2*sqrt(2*Size) point-to-point links
• Size of core routers’ neighbourhood of core nodes grows a sqrt(Size)
• Network diameter is always 3

22

Topologies – Two-Tier Hierarchy

> Topologies composed of a small core surrounded by dual-homed
metro nodes surrounded by dual-homed edge nodes
• Symmetric point-to-point links with metrics between 1 and 9
• The instance running the algorithm is the core node with the smallest ID
• Key parameters are the size of the core, metro, and edge

> Two-Tier Hierarchy
• N core nodes, fully meshed (except for N=2)
• M metro nodes, dual-homed onto core nodes
• L edge nodes, dual-homed onto metro nodes
• L+M+N nodes and 2(L+M)+N(N-1)/2 links in total (2(L+M) for N=2)
• L/M ~ M/N vary between 4 and 6
• Small network diameter: 5 (4 for N=2)

23

Light Mesh – 50 Switches

4431

4134

4728

50

3936

4926

30 45

32 43

35 40

4827

33 42

4629

37 38

0719

0422

1016

13

0224

1214

18 08

20 06

23 03

1115

21 05

0917

25 01

24

Heavy Mesh – 50 Switches

4515 25 35

4626 36

01

0309

06

0408

4919 29 39

4818 28 38

4717 27 37

44 142434

43 2333

50 203040

41 112131

42 122232

1613

0507

0210

25

Meshed Core – 50 Switches

4515 25 35

4626 36

01

0309

06

0408

4919 29 39

4818 28 38

4717 27 37

44 142434

43 2333

50 203040

41 112131

42 122232

1613

0507

0210

26

Two-Tier – 52 Switches

01 02

09

04

11

06
05

10

07

12

03

08

32

31
21

30

51
22

41

50
40

20

37

38
48

39

18
47

28

19
29

49

42

33
43

34

13
52

23

14
24

44

27

26
16

25

46
17

36

45
35

15

