

Convergence of 801.1Q, ETS, PFC, CN & AVB

Joe Pelissier az-pelissier-convergence-proposal-0309

Background

The current ETS proposal defines ETS mappings using:

The existing 802.1Q table to map Priority to Traffic Class

A new table to map Priority to Priority Group

A new table that provides the bandwidth allocated to each Priority Group

Previous version of this presentation have proposed:

A new table mapping Priority to Priority Group

A new table providing Priority Group Parameters

A automatic configuration of the existing 802.1Q Priority to Traffic Class mapping table

Both proposals are problematic

Issue with existing ETS proposal

It is possible to program the tables in such a way that the resulting behavior is undefined, eg:

Priority	ТС	PG
1	1	1 @ 30%
2	1	2 @ 70%

- Recall that Traffic Class refers to queues. Thus, head of line blocking makes the bandwidth allocation of the above programming unrealizable.
- Implication: A given traffic class can map to one and only one PG. (Multiple traffic classes may map to the same PG).

Issue with previous version of this proposal

The mapping was backwards:

What was proposed: Priority groups map to a traffic class; a single PG may map to only one PG

What is desired: Traffic Classes map to Priority Groups. A single TC may map to one and only one PG.

The automatic generation of the Priority to Traffic Class table was very complex

The need to provide this automatic mapping goes away when you correct the above

Overview of new proposal

- Maintain the current 802.1Q Priority to Traffic Class mapping table as is.
- Change the proposed Priority to Priority Group mapping table to a Traffic Class Use Table
- Add a Priority Configuration Table
- Add a Priority Group Bandwidth Table

Traffic Class Use Table

One entry per Traffic Class supported:

Traffic Class Use (4 bits):

0-7 Assign the traffic class to the corresponding PG

13 Assigns the traffic class to AVB group 1

14 Assigns the traffic class to AVB group 2

15 Assigns the traffic class to nothing (i.e. remains strict priority).

8-12 reserved (interpret as 15?).

Priority Configuration Table

Contains eight entries, one per Priority (0-7):

PFC Enabled (1 bit). Set to one if PFC is enabled, 0 otherwise

CN Enabled (1 bit). Set to 1 if CN is enabled, 0 otherwise

CN Alternate Priority (3 bits). Indicates the priority to use for CN defense (update this to Norm's document). Reserved if CN=0.

Priority Group Bandwidth Table

Eight entries, one per Priority Group (0-7)

BW assignment (8 bits): valid values are 0-100.

Specifies the minimum bandwidth that a given priority group should receive when the link is over-subscribed by PG traffic after all non-PG traffic has been serviced.

(This definition can be modified quite simply if we decide that the percents do not always add to 100).

Thank You!