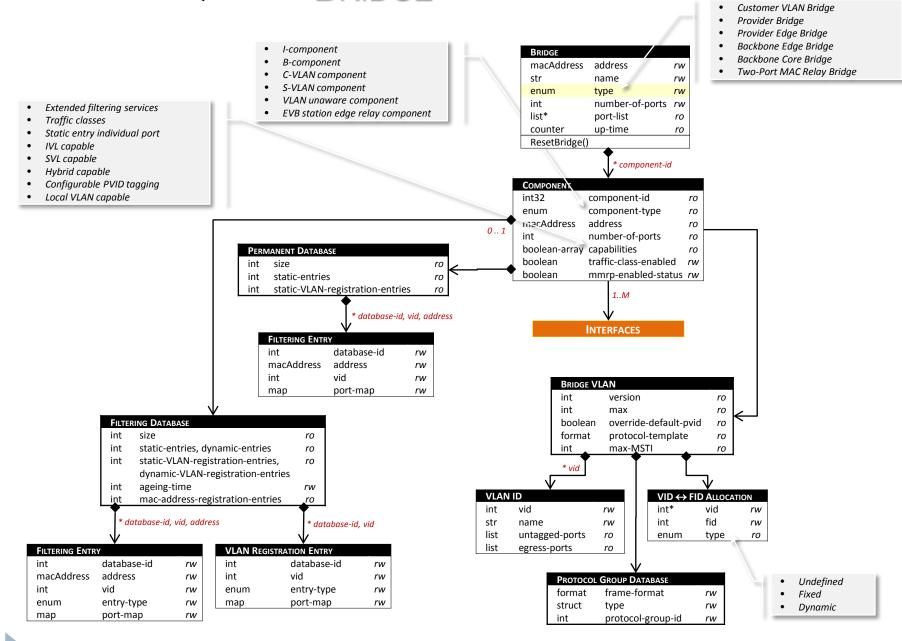
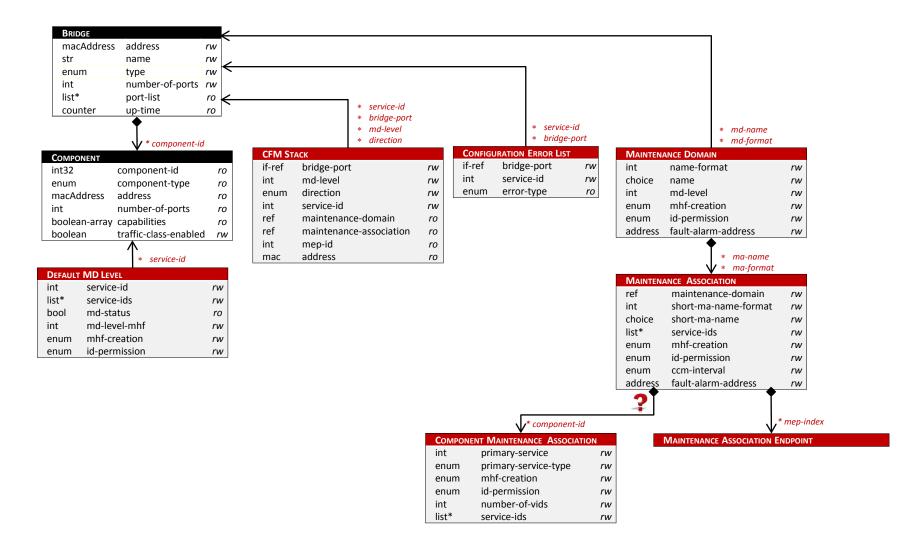

IEEE 802.1Qcx (CFM) YANG Model Overview

Marc Holness (mholness@ciena.com)

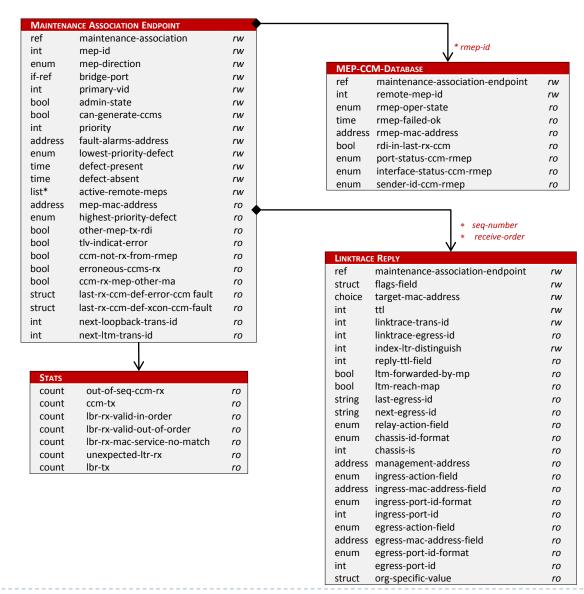

Version 1.0

January 23, 2018

IEEE 802.1Q-2017 (Generic) Bridge Model



IEEE 802.1Q-2014 Bridge Model


IEEE 802.1Qcx Model

BRIDGE (COMPONENT) TO CFM RELATIONSHIPS

IEEE 802.1Qcx Model

CFM MEP OBJECT RELATIONSHIPS

IEEE 802.1Qcx Model

CFM Transmit Commands and Notifications

TRANSMIT-LOOPBACK-MESSAGE and TRANSMIT-LINKTRACE-MESSAGE commands can be implemented by RPCs (Remote Procedure Calls)

	-			
Transmit-Loopback()				
ref	maintenance-association-endpoint	rw		
choice	target-address	rw		
int	lbm-tx-number	rw		
str	data	rw		
bool	data-tlv	rw		
int	priority	rw		
int	dei	rw		
bool	lbm-result-ok	ro		
int	loopback-trans-id	ro		

Transmit-Linktrace()				
ref	maintenance-association-endpoint	rw		
choice	target-address	rw		
int	ltm-flags	rw		
str	ltm-ttl	rw		
bool	ltm-result-ok	ro		
int	ltm-seq-number	ro		
string	ltm-egress-identifier	ro		

Notification (Traps/Alarms) for MEP FAULT ALARM

MEP FAULT ALARM				
ref	maintenance-association-endpoint	ro		
enum	mep-priority-defect	ro		

- There are data types (e.g., LinkTrace Reply output) referenced by the CFM YANG model that are defined by IEEE 802.1AB-2005 (LLDP)
 - For example, chassis ID subtype, chassis ID, port ID subtype, and port ID
 - These data types should be defined as part of P802.1Qcu project, and thus introduces a dependency on this project
- There are data types (e.g., LinkTrace Reply output) referenced by the CFM YANG model that defines a "management address information of the Bridge" transmitting the LTR
 - 802.1Q-2017, Clause 21.5.3.7, provides a description of the Management Address, and references RFC 3419 (Textual Conventions for Transport Addresses) and RFC 4789 (SNMP over IEEE 802 Networks)
 - Transport domain definitions are provided for SNMP/MIBs
 - Transport address definitions are provided for SNMP/MIBs
 - Are similar definitions already provided for YANG?

- 3. What is the best way to associate YANG CFM objects to existing (802.1Qcp) Bridge YANG object?
 - There is a single CFM Stack object per Bridge
 - There is a single Configuration Error List object per Bridge
 - There is a single Default MD Level object per Bridge Component
 - There is a single MD List object per Bridge

Proposal: Major CFM YANG objects (e.g., CFM Stack, Default MD Level, Configuration Error List, MD List) will define a pointer/reference to the associated Bridge or Bridge Component

- I believe this approach is advantageous over augmenting the Bridge (or Bridge Component), since it could gracefully facilitate other switching/routing devices to utilize the CFM YANG model
- I believe this approach is advantageous over including the pointer in the Bridge or Bridge Component YANG objects, because there is no need to (continuously) amend the Bridge and Bridge Component objects with pointers of users of the Bridge

- 4. In the CFM-v2 MIB (802.1Q-2017), a "CFM Maintenance Association (MA) Component Table" is defined
 - As stated in 802.1Q-2017, Clause 17.7.7
 - "... That part of the MA table that can vary from Bridge component to Bridge component is contained in the [CFM MA Component Table] ..."
 - "... This is the part of the complete MA table that is variable across the Brides in the MD, or across the components of a single Bridge ..."
 - What is the best way to model this in YANG?

- 5. In the CFM-v2 MIB (802.1Q-2017), a "CFM VLAN Table" is defined
 - As stated in 802.1Q-2017, Clause 17.7.7
 - "... This table defines the association of VIDs into VLANs. There is an entry in this table, for each component of the Bridge, for each VID that is:
 - a) a VID belonging to a VLAN associated with more than one VID; and
 - b) not the Primary VID of that VLAN.

The entry in this table contains the Primary VID of the VLAN.

... VLANs that are associated with only one VID **should not** have an entry in this table ..."

- What?
- How should this be effectively modeled in YANG?

Preliminary P802.1Qcx YANG module

Initial P802.1Qcx YANG module definitions

P802.1Qcx YANG tree schema

