

Traffic Patterns for Converged Industrial Communication

Presentation for IEEE/IEC joint project

Traffic Patterns for Converged Industrial Communication

Rationale

- Different applications have different requirements regarding data transfer (=traffic pattern)
- Applications and hence associated traffic patterns have different priorities
 - Hard real-time traffic has highest priority
 - Best effort traffic has lowest priority
- Various traffic patterns shall coexist on one network
 - Properties of higher priority traffic will be guaranteed, independent of behavior of lower priority traffic
 - Unused bandwidth of higher priority traffic can be used by lower priorities

List of Traffic Patterns Image: Comparison of the patterns Application view Image: Comparison of the patterns ID Working Name Guarantee ID Working Name Guarantee									
ID	Working Name	Guarantee	100 SIL	ohase a	eriodic	andurio	Data size	Redundancy mechanism	Comment
Class I	isochronous	bounded la- tency/deadline	V	~	Р		bounded	seamless	Future use (LNI)
Class II	cyclic	bounded latency	optional		Ρ	\checkmark	bounded	seamless	LNI first use case
Class III	network control	priority	-	-	S	*		not required	
Class IV	audio/video	bounded la- tency/bandwidth	-	-	Р	*	bounded	regular	
Class V	alarms/ events	bounded la- tency/bandwidth	-	-	S	*		regular	
Class VI	config/ diagnosis	bandwidth	-	_	S	*		regular	
Class VII	best effort	-	-	-	S			regular	

Class 1 – Isochronous

- \rightarrow Application entirely synchronised with network
- cyclic operation, very small jitter
- all participants and applications synchronized over/through the network
- amount of data per node per cycle constant (at least bounded)
- optional seamless redundancy
- talker guarantees fixed sending time (option 1) or synchronised sending per StreamClass (option 2)
- network guarantees bandwidth and latency
- guaranteed reception time at listener
- applications :
 - highly synchronous, fast control applications, e.g. synchronised axis (high-end motion control), IOs
 - highly synchronous applications like line integration, connection to robotics
- comparable today's solutions : SERCOS, POWERLINK, EtherCAT, Profinet IRT, ...

Class 2 – Cyclic

- \rightarrow Application NOT entirely synchronised with network
- cyclic operation with jitter (compared to class 1)
- participants can be synchronized, don't have to be
- amount of data per node per cycle constant (at least bounded)
- optional seamless redundancy
- talkers send, when data is ready
- network guarantees bandwidth and maximum latency
- applications:
 - fast control applications with tolerable jitter, e.g. position control (standard Motion Control), IOs
 - applications with tolerable jitter like Scada, HMI
- comparable today's solutions: Profinet RT, CC-Link IE, Ethernet/IP, ...
- LNI 4.0 1st Use Case: ("phase") synchronous application on robots (2 pcs.), transportation, cameras: current cycle time 12ms. The first LNI Use Case requires clock sync; Controllers of this Use Cases (robot, camera,...) are fully phase-aligned to each other, however, probably not with the network

Class 3 – Network Control

- All protocols, which are required for maintaining the normal operation of the network (time sync, etc)
- sporadic occurances of messages
- Restrictions in terms of number or size of messages (slow protocols)
- no requirements regarding redundancy, priorized service, however, less priority than stream classes

Class 4 – Video

- cyclic operation
- participants usually synchronized
- amount of data per node per cycle constant (at least bounded)
- optional seamless redundancy
- network guarantees bandwidth and maximum latency
- applications:
 - quality control and video surveillance

Class 5 – Alarms/Events

- sporadic occurances of messages
- typically common format (=size) of messages
- regular: switchover redundancy , optional: seamless redundancy
- a maximum number of alarms per time that have to be guaranteed by the network can be given
- network guarantees bandwidth. no latency guarantee required since in the 100ms range
- unused bandwidth can be "ceded"
- applications:
 - guaranteed bandwidth for transmission of error and alarm messages
- comparable today's solutions: various field busses, various redundancy solutions

Class 6 – Config/Diagnosis

- sporadic occurances of messages
- no restriction in terms of number or size of messages
- typically using a transport layer (hence, no network redundancy required)
- no latency requirements
- requirements for bandwidth, to allow for "normal" operation (bandwidth allocation per class)
- network guarantees bandwidth
- unused bandwidth can be "ceded"

Class 7 – Best effort

- the rest
- no requirements regarding redundancy, bandwidth, latency, ...
- uses remaining bandwidth