Enabling the Fixed Relay and Mesh Capabilities to Enhance IEEE802.16e

Document Number:
S802.16-05-011

Date Submitted:
2005-05-05

Source:
Wen Tong, Peiying Zhu, Mo-Han Fong, Brian Johnson
Gamini Senarath, Shalini Periyalwar, Derek Yu,
Hang Zhang, David Steer
Nortel
3500 Carling Avenue
Ottawa, Ontario, K2H 8E9

Venue:
[Cite the specific meeting and any known agenda details.]

Base Document: N/A

Purpose:
To present the benefit of Fixed Relay and Mesh to enhancement IEEE802.16e performance.

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Background

• Building on the success of the 802.16e technology, we propose to introduce two networking modes
 – Fixed relaying station and inter-BS meshing capabilities
• FRS allows low cost solution to increase the wide area high speed data rate coverage
 – Improve coverage, capacity and MS battery life
• Inter-BS meshing enables advanced backhaul solution to meet the challenges of
 – NLOS requirement
 – Reliability and resilient
 – Capacity scaling and low cost deployment
New Networking Modes and Topologies
(Fixed Relay Station)

- Down link direction
 - BS to MS (BM)
 - BS to FRS (BR)
 - FRS to MS (RM)

- Up link direction
 - MS to BS (MB)
 - MS to FRS (MR)
 - FRS to BS (RB)

Goal should be for maximum reuse of mechanics and building blocks in the existing 802.16e to enable new link modes in both UL and DL.
New Networking Modes and Topologies
(Inter-BS Meshing)

Requirement

- NOLS mesh technology for packet backhaul
- Very low latency requirement
- Resilient and self heal requirement

Load Balancing
Layer 2 switching (not routing)
Requires neighbor discovery and neighbor list at each node
Auto-configuring for initial setup and for slow traffic variations
Macro-Cell with FRS Network RF Modeling

- Beam Tx power is 15 watts. Fixed relay Tx power is 3 watts
- Beam Tx EIRP is 60.5 dBm. (FCC EIRP limit 62.0 dBm minus 1.5 dB margin)
 \[\text{Tx power + antenna gain} = 41.76 \, \text{dBm} + 18.77 \, \text{dB} = 60.53 \, \text{dBm} \]
- Base Height = 34 meters; Relay Height = 12.5 meters
- Path loss and shadowing
 - Base to MS (SCM macro path loss)
 - Base to FRS (802.16 Type C)
 - FRS to MS (SCM micro path loss model)
- Nomadic Rician Fading (K factor = 10 dB for all three links
 BS to MS, BS to FRS and FRS to MS)
- 1 X 1 Antenna
- In-band OFDM/TDM relay mode
- Intra-cell & Inter-cell interference (globally synchronous timing)
 - BS to MS time slot : Interference at UE only from BSs
 - BS to FRS time slot : Interference at FRS only from BSs
 - FRS to MS time slot : Interference at MS only from FRS
- Channel quality C/I measurement and reporting
- Adaptive modulation and coding (AMC)
Fixed Relay and Mesh technologies for 802.16e provides significant enhancement for the 802.16e system
FSR improves the high speed data rate coverage
FSR increases the user throughput and experience
FSR is a lower CAPX/OPEX solution
Backup
Macro-Cell with FRS Network System Modeling

- Full queue traffic
- TCP/IP data traffic models with TCP/IP
- Timer based MAC state transitioning
- Routing (BS to MS, or BS to FRS to MS)
 - Dynamic
 - Static
- Proportional Fairness Scheduling centralized at BS (FIFO at relay)
- 19 macro cells (1Km cell to cell separation)
- Macro cell SDM beam pattern (3 beams per sector)
- Serving beam: Center beam of a sector in center cell
- Relay locations (0.5 cell radius from BS unless specified)
- Relay antenna pattern
 - FRS to BS
 - FRS to MS