Bridging Support for 802.16

IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number:
IEEE 802.16-06/001

Date Submitted:
2006-02-14

Source:
David Johnston
Voice: +1 503 264 3855
Intel Corporation
Fax: +1 503 264 ????
2111 NW 25th Ave
E-mail: dj.johnston@intel.com
Hillsboro, OR, 97124

Venue:
March 2006, IEEE 802.16 Session #42, Denver CO.

Base Document:
IEEE C802.16-06/001 <http://iee802.org/16/docs/06/C80216-06_001.pdf>

Purpose:
Review and adopt proposed model and text for the support of the 802 ISS within bridged networks

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://iee802.org/16/ipr/patents/notices>.
Support for Bridging in 802 Networks

- Bridged networks are made of things that look like LANs connected together by bridges.
 - LANs look in many respects like FYC (Fat Yellow Coax)
 - Bridges behave as described in 802.1D
Bridges Assume LANs Behave in a Certain Way

• The original FYC (Ethernet) had properties that bridges rely on
 – Attached bridges can hear all the traffic on the wire
 – Traffic on the wire isn’t reordered
 – Etc.

• All 802 networks must model this behaviour if attached bridges are to work.

• There is a 5C requirement to do this

• But this behaviour isn’t universal in 802
 – 802.11 systems often filter by address preventing STA attached bridges from hearing all traffic and so preventing topology learning working
 – 802.16 doesn’t go as far as specifying whether filtering by address takes place, so it may or may not take place.
The Address Filtering Problem

This AP doesn’t forward traffic to \{G,H,I\} or \{A,B,C\} because STAs hear only traffic to themselves and even in promiscuous mode they do not hear all traffic due to hidden nodes and multiple MCS codings.

This AP is neither an 802.1D bridge nor sufficiently like a FYC.

So this bridge doesn’t hear traffic from A to G
The 802.11 Bridging Broadcasts Problem

Broadcast traffic reaching an AP gets rebroadcast by the AP.

Bridge Forwards packet

802.3 frame SA=H, DA=BCAST

Bridge doesn’t know if the rebroadcast frame is directed towards it, or everyone else on the 802.11 side
802.16k Makes Sure This Works

By describing how the ISS is mapped onto the 802 CS or 802.3 CS and how the packets are subsequently treated so that the service below the ISS models a FYC sufficiently closely.
And This

802.16k will ensure that MMR relay stations support ISS as BS and SS effectively.
Support for the ISS

- The ISS (Internal Sublayer Service) is the 802.1 model of the MAC service. Bridges assume all MACs can provide the ISS and through the ISS, FYC functionality can be accessed.

- Section 6.5 of 802.1D contains descriptions of mappings between the ISS and the MAC service of various media in 802.

- 802.16 needs to write its own section here describing its own mapping and must do it in such a way that it 802.16 systems model FYC sufficiently that 802.1D bridges can work.
How can 802.16 look like a FYC?

• An 802.16 BS could emulate a FYC joining all the registered STAs
 – It would need to ensure that every SS hears all traffic presented to all other attached SSs.
 • This would impact efficiency.
 • To be heard by everyone, all DL packets would need to be sent at the lowest, most robust date rate, without AAS. All UL packets would need to be retransmitted on the DL.

• Each CS-CS peer association is a point to point LAN
 – These p2p LANs may or may not be bridged at the BS or SS.
 – Traffic could be forwarded according to 802.1D
 – This is exactly what 100/1G base-t switched ethernet does
CS@BS to CS@SS = P2P LAN

802.16k
(802.1D Clause 6.5.5)
802.16 – 802.1 or 802.3 Packet CS
MAC SAP
ISS

Point to point LAN

MAC CPS, Phy, Antenna, Air

ISS

802.16k
(802.1D Clause 6.5.5)
802.16 – 802.1 or 802.3 Packet CS
MAC SAP

SS

ISS

802.16k
(802.1D Clause 6.5.5)
802.16 – 802.1 or 802.3 Packet CS
MAC SAP

Point to point LAN

MAC CPS, Phy, Antenna, Air

ISS

802.16k
(802.1D Clause 6.5.5)
802.16 – 802.1 or 802.3 Packet CS
MAC SAP

RS

MAC CPS, Phy, Ant, Air
What this means for the 802.1D Text (1)

• Assert that
 – Each SS with an 802.3 or 802.1 CS service registered with a BS implements an independent point to point 802 network.
 – The BS or SS may be an 802.1 bridge (implicitly)

– The 802 CS SAP IS the ISS
 • No need to define the primitives in the spec.
What this means for the 802.1D Text (2)

• Primitive Parameter Mappings – 802.3 CS
 – The mappings of the parameters of the M_UNITDATA primitives are described by referring to the relevant 802.1 CS or 802.3 CS text in 802.16 and section 6.5.1 of 802.1D.
What this means for the 802.1D Text (3)

• **Primitive Parameter Mappings – 802.1 CS**
 – The encoding of the primitive fields must be defined
 – This proposal uses a structure similar to 802.3, but uses the initial byte to directly encode `user_priority` and `access_priority`.

```
M_UNITDATA.request (
  frame_type, == user_data
  destination_address,
  source_address,
  mac_service_data_unit, 
  user_priority,
  access_priority,
  frame_check_sequence
)
```

Use LLC coded SNAP header with 802.1Q tag type when VLAN used

No point forwarding CRC
It almost always changes with 802.16.

This makes PHS look like a pretty good idea.

802.1 Frame embedded in MAC CPS MSDU
Why this format?

- The proposed format closely matches the 802.3 header format, but improves support for the end to end maintenance of the user_priority value.

<table>
<thead>
<tr>
<th></th>
<th>802.1 CS</th>
<th></th>
<th>802.3 CS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHSI</td>
<td>ISSP</td>
<td>Payload</td>
</tr>
<tr>
<td></td>
<td>(if PHS is active)</td>
<td>1 Byte</td>
<td>N Bytes</td>
</tr>
<tr>
<td></td>
<td>DA</td>
<td>6 Bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>6 Bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td>N Bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What this means for the 802.1D Text (4)

• ISS Support
 – ISS is supported for 802.1 CS
 – ISS is supported as per 802.3 for the 802.3 CS
 – ISS is not supported for ATM and IP CS

• Priority Mappings
 – Priority mappings of 8 level user priorities to 802.16 CS CID mapping and service flows are defined in Packet CS already.

• Annex A PICS Proforma
 – Support for 802.16 must be added to the PICS proforma in Annex A of 802.1D
Summary

• Explicit support for bridging of 802.16 between and other 802.* devices.
• Ambiguities in VLAN tagging format disambiguated
• Declaration of point to point nature of BS-SS CS peers provides background for correct bridging over new entities such as relay stations
• Explicit support for 802.1p end to end priority data through explicit encoding of user_priority
• Physical format of 802.1 CS and 802.3 CS headers close
• PAR and 5C commitments met