Comment to C80216j-06_057 Proposal for Requirement that RS Transmits Preamble

IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number:
IEEE C802.16j-06/089

Date Submitted: 2006-09-18
Source:
Kanchei (Ken) Loa, Yung-Ting Lee,
Yi-Hsueh Tsai, Heng-lang Hsu,
Hsien-Tsung Hsu, David Lin
Institute for Information Industry
8F., No. 218, Sec. 2, Dunhua S. Rd.,
Taipei City, Taiwan.

Venue:
IEEE 802.16 Session #45, Mont Tremblant, Canada

Base Document:
None.

Purpose:
This contribution is to clarify M4 requirement (MS backward compatibility) of IEEE 802.16j-06_016 w.r.t. preamble & midamble.

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Outline

1. Preamble usage defined in 802.16 specifications
2. Frequency reuse scenarios
3. MS Operational Effectiveness in Presence of RS
4. Comparison analysis in different usage models
5. Recommendations
Preamble Usage Defined in 802.16 Specifications

1. Frame-start DL Preamble
 (In 802.16-2004/16e-2005 page 552/513)
2. AAS Preamble
 (In 802.16e-2005 page 367)
3. STC/FHDC Preamble
 (In 802.16e-2005 page 571)
4. MIMO Midamble
 (In 802.16e-2005 page 599)
Preamble Definition

<table>
<thead>
<tr>
<th>Frame</th>
<th>DL Burst #1</th>
<th>DL Burst #2</th>
<th>DL Burst #3</th>
<th>DL Burst #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCH</td>
<td>AAS Burst #1</td>
<td>AAS Burst #2</td>
<td>AAS Burst #3</td>
<td>AAS Burst #4</td>
</tr>
<tr>
<td></td>
<td>AAS (P)</td>
<td>AAS (P)</td>
<td>AAS (P)</td>
<td>AAS (P)</td>
</tr>
<tr>
<td></td>
<td>MIMO Midamble</td>
<td>MIMO Midamble</td>
<td>MIMO Midamble</td>
<td>MIMO Midamble</td>
</tr>
<tr>
<td></td>
<td>STC Preamble</td>
<td>STC Preamble</td>
<td>STC Preamble</td>
<td>STC Preamble</td>
</tr>
<tr>
<td></td>
<td>STC/FHDC PUSC Zone</td>
<td>STC/FHDC PUSC Zone</td>
<td>STC/FHDC PUSC Zone</td>
<td>STC/FHDC PUSC Zone</td>
</tr>
</tbody>
</table>

- DL burst #1: carrying the UL-MAP
- AAS (P): AAS Burst (Power)
- MIMO Midamble
- STC Preamble
- STC/FHDC PUSC Zone
Frequency Reuse Scenarios

1. SFSS - BS and RS operate at “same center carrier frequency” and “same segment”
2. SFDS - BS and RS operate at “same center carrier frequency” but “different segment”
3. DF - BS and RS operate at “different center carrier frequency”
Scope Of Discussion - 1

1. In cases of SFDS or DF, transmitting preamble & midamble should be mandatory for the RS
 - RS is the only source for transmitting preamble & midamble

2. In the case of SFSS, transmitting preamble & midamble may be optional for the RS
1. With regards to AAS Preamble, STC/FHDC Preamble and MIMO Midamble, transmitting preamble or midamble by RS should follow 802.16 specifications defined for BS in SFSS
 - RS is the only source for transmitting preamble or midamble due to spatial diversity

2. With regards to Frame-start DL Preamble, transmitting preamble may be optional for the RS in SFSS
The Purposes of Frame-start DL Preamble for MS

1. Cell search & frame boundary detection
2. Cell ID & segment identification
3. Frequency/timing offset compensation
4. Channel estimation
5. Channel quality measurement (CINR)
The Analysis of RS Transmitting Frame-start DL Preamble

<table>
<thead>
<tr>
<th>Tx frame-start DL preamble</th>
<th>Tx FCH, DL-MAP, UL-MAP, DCD, UCD</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>Not recommended*1</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>Not recommended*1</td>
</tr>
</tbody>
</table>

*1: the preamble and “FCH, DL-MAP, UL-MAP, DCD, or UCD” could be in different channel conditions
Relay Station Modes

• SFSS (Single Frequency Single Segment)
 – **Mode I** - RS doesn’t Tx frame-start DL preamble, FCH, DL-MAP, UL-MAP, DCD, and UCD
 – **Mode II** - RS Tx the same frame-start DL preamble, FCH, DL-MAP, UL-MAP, DCD, and UCD as those sent by BS

• SFDS or DF (Single Frequency Different Segment or Different Frequency)
 – **Mode III** - RS Tx it’s own frame-start DL preamble, FCH, DL-MAP, UL-MAP, DCD, and UCD that were received from BS
 – **Mode IV** - RS Tx it’s own frame-start DL preamble, FCH, DL-MAP, UL-MAP, DCD, and UCD
MS Operational Effectiveness in Presence of RS

<table>
<thead>
<tr>
<th>Effectiveness to BS</th>
<th>Mode I</th>
<th>Mode II</th>
<th>Mode III</th>
<th>Mode IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS cell search & BS frame boundary detection @ MS</td>
<td>Same</td>
<td>Conditional*3</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>BS cell ID & BS segment identification @ MS</td>
<td>Same</td>
<td>Same</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>DL frequency/timing offset compensation @ MS</td>
<td>Same</td>
<td>Conditional*3</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>DL channel estimation @ MS</td>
<td>Only by pilots in its burst</td>
<td>Same</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td></td>
<td>Also by preamble and/or pilots in other bursts</td>
<td>Possibly Negative*1</td>
<td>Possibly Negative*2</td>
<td>Same</td>
</tr>
<tr>
<td>Channel quality measurement @MS (CINR accuracy of BS preamble)</td>
<td>Same</td>
<td>Possibly Negative*3</td>
<td>Same</td>
<td>Same</td>
</tr>
</tbody>
</table>

Same: No change w.r.t. MS operational effectiveness
Conditional: Could be positive, same or negative depending on the operating environment, e.g., whether it is in range extension model or throughput enhancement model, whether the RS signal received by the MS is much stronger than the BS signal, whether the RNG-RSP (ranging response) message can be used effectively, etc

*1: depend on sources of bursts included in the channel estimation algorithm
*2: due to channel estimation algorithm
*3: MS receives multi-path signals from BS & RS
MS Operational Effectiveness in Presence of RS

<table>
<thead>
<tr>
<th>RS Mode Effectiveness to RS</th>
<th>Mode I</th>
<th>Mode II</th>
<th>Mode III</th>
<th>Mode IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS cell search & RS frame boundary detection @ MS</td>
<td>N/A</td>
<td>Conditional*3</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>RS cell ID & RS segment identification @ MS</td>
<td>N/A</td>
<td>Same</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>DL frequency/timing offset compensation @ MS</td>
<td>Conditional*1</td>
<td>Conditional*3</td>
<td>Same</td>
<td>Same</td>
</tr>
</tbody>
</table>

- **Mode I**: Same
- **Mode II**: Conditional*3
- **Mode III**: Same
- **Mode IV**: Same

<table>
<thead>
<tr>
<th>DL channel estimation @ MS</th>
<th>Only by pilots in its burst</th>
<th>Same</th>
<th>Same</th>
<th>Same</th>
<th>Same</th>
</tr>
</thead>
<tbody>
<tr>
<td>Also by preamble and/or pilots in other bursts</td>
<td>Possibly Negative*2</td>
<td>Possibly Negative*2</td>
<td>Same</td>
<td>Same</td>
<td></td>
</tr>
</tbody>
</table>

| Channel quality measurement @MS (CINR accuracy of RS preamble) | N/A | Possibly Negative*3 | Same | Same |

Same: No change w.r.t. MS operational effectiveness

Conditional: Could be positive, same or negative depending on the operating environment, e.g., whether it is in range extension model or throughput enhancement model, whether the RS signal received by the MS is much stronger than the BS signal, whether the RNG-RSP (ranging response) message can be used effectively, etc

*1: **time synchronization problem between BS & RS, Doppler shift**

*2: **due to channel estimation algorithm and sources of bursts included in the algorithm**

*3: MS receives multi-path signals from BS & RS
Comparison Analysis in Different Usage Models

1. In pure ranging extension usage model
2. In pure throughput enhancement usage model
3. In mixed usage model
Pure Ranging Extension

• In a RS coverage, MS cannot detect frame-start DL preamble from BS; or MS can detect frame-start DL preamble from BS but cannot correctly decode FCH, DL-MAP, UL-MAP, DCD, and UCD from BS
• Mode I RS cannot work in this case
Pure Throughput Enhancement

• In a RS coverage, MS can correctly decode FCH, DL-MAP, UL-MAP, DCD, and UCD from BS

• Mode I, II, III or IV RS could be used in this case
Mixed Usage Model

- In a RS coverage, some MSs are operating in pure ranging extension while some MSs are operating in pure throughput enhancement.
- Mode I RS may not work in this case.
Summary

1. We recommend that the RS be required to transmit the frame-start DL preamble when it operates with BS at “same frequency, different segment” or “different frequency”

2. In pure range extension usage model, we recommend that the RS be required to transmit the frame-start DL preamble

3. We recommend that transmitting AAS Preamble, STC/FHDC Preamble and MIMO Midamble by RS should follow 802.16 specifications defined for BS

4. We recommend that the RS be required to either transmit the frame-start DL preamble plus “FCH, DL-MAP, UL-MAP, DCD, and UCD”, or transmit none
Recommendation

| M4 | PHY frame structure for backward compatibility with legacy 16 mobile station | The specification shall define a backward compatible frame structure that supports relay links while accommodating the legacy access links. | MMR-BS (M) RS (M) |

- Transmitting AAS Preamble, STC/FHDC Preamble and MIMO Midamble by RS should follow 802.16 specifications defined for BS
- RS shall be required to either transmit the frame-start DL preamble plus “FCH, DL-MAP, UL-MAP, DCD, and UCD”, or transmit none