Comment to C80216j-06_057 Proposal for Requirement that RS Transmits Preamble

IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number:

IEEE S802.16j-06/089r1

Date Submitted: 2006-09-18		
Source:		
Kanchei (Ken) Loa, Yung-Ting Lee,		
Yi-Hsueh Tsai, Heng-lang Hsu,		
Hsien-Tsung Hsu, David Lin	Voice:	886-2-2739-9616
Institute for Information Industry	Fax:	886-2-2378-2328
8F., No. 218, Sec. 2, Dunhua S. Rd.,	E-mail:	loa@nmi.iii.org.tw
Taipei City, Taiwan.		

Venue:

IEEE 802.16 Session #45, Mont Tremblant, Canada Base Document:

None.

Purpose:

This contribution is to clarify M4 requirement (MS backward compatibility) of IEEE 802.16j-06_016 w.r.t. preamble & midamble, plus recommends modifications to TR. The analysis applies to the access link only (the preambles & maps seen by MS). Notice:

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices/.

Outline

- 1. Preamble usage defined in 802.16 specifications
- 2. Frequency reuse scenarios
- MS Operational Effectiveness in Presence of RS
- 4. Comparison analysis in different usage models
- 5. Recommended modifications to TR

Preamble Usage Defined in 802.16 Specifications

- Frame-start DL Preamble (In 802.16-2004/16e-2005 page 552/513)
- 2. AAS Preamble(In 802.16e-2005 page 367)
- 3. STC/FHDC Preamble (In 802.16e-2005 page 571)
- 4. MIMO Midamble (In 802.16e-2005 page 599)

Preamble Definition

	k	<i>k</i> +1	<i>k</i> +3	<i>k</i> +5										
$ \begin{array}{c} s\\s+1\\s+2\\s+3\\s+3\end{array} $		FCH	tt #1 g the AP)	D (AAS (P)		S Bur	st #1	ble		e			
s+3	-		DL burst #1 (carrying the UL-MAP)	Burst #3	AAS (P)	AAS Burst #2	AA	AS Burst #4	Midamble	MIMO PUSC	Preamble	STC/FHDC PUSC Zone		
		DL-MAP	Burs	+ # ?	AAS (P)	AAS Burst #3	AAS (P)	AAS Burst #5	OMIMO	Zone	STC			
_			Duis	ft #2	AAS (P)	AAS-DLFP	AAS (P)	AAS-DLFP	F					
	Preamble	FCH	rst #1 ng the 1AP)	Burst #3	AAS (P)	AAS	S Bur	st #1	mble		ble		mble	MIMO
	frame-start DL P	DL-MAP	DL burst #1 (carrying the UL-MAP)	Burst #4	AAS (P)	AAS Burst #2	AAS (P)	AAS Burst #3	MIMO Midamble	MIMO PUSC Zone	STC Preamble	STC/FHDC PUSC Zone	MIMO Midamble	FUSC Zone
_	me-s	DL	Burst #2	# 4	S (S (MI		S		MI	
	fra		$\pi \mathcal{L}$		(P)	AAS-DLFP	AAS (P)	AAS-DLFP					-	
	-	FCH	DL burst #1 (carrying the UL-MAP)		AAS (P)	AAS Burst #1	AAS (P)	AAS Burst #2	Midamble	MIMO	Preamble			
_		AP	DL UL	Burst #3	AAS	AAS Buist #1				PUSC	Prea	STC/FHDC PUSC Zone		
		DL-MAP	Burst	0			AAS (P)	AAS Burst #3	OMIMO	Zone	STC I			
_		Ι	#2		AAS (P)	AAS-DLFP	AAS (P)	AAS-DLFP						

Frequency Reuse Scenarios

- 1. SFSS BS and RS operate at "<u>same center</u> <u>carrier frequency</u>" and "<u>same segment</u>"
- 2. SFDS BS and RS operate at "<u>same center</u> <u>carrier frequency</u>" but "<u>different segment</u>"
- 3. DF BS and RS operate at "different *center carrier frequency*"

Scope Of Discussion - 1

- In cases of SFDS or DF, transmitting preamble & midamble should be mandatory for the RS
 - RS is the only source for transmitting preamble & midamble
- 2. In the case of SFSS, transmitting preamble & midamble may be optional for the RS

Scope Of Discussion - 2

- With regards to AAS Preamble, STC/FHDC Preamble and MIMO Midamble, transmitting preamble or midamble by RS should follow 802.16 specifications defined for BS in SFSS
 - RS is the only source for transmitting preamble or midamble due to spatial diversity
- 2. With regards to Frame-start DL Preamble, transmitting preamble may be optional for the RS in SFSS

The Purposes of Frame-start DL Preamble for MS

- 1. Cell search & frame boundary detection
- 2. Cell ID & segment identification
- 3. Frequency/timing offset compensation
- 4. Channel estimation
- 5. Channel quality measurement (CINR)

The Analysis of RS Transmitting Frame-start DL Preamble

Tx frame-start	Tx FCH, DL-MAP,	Comment
DL preamble	UL-MAP, DCD, UCD	
Ν	Ν	
Y	Y	
Y	Ν	Not
		recommended*1
Ν	Y	Not
		recommended*1

*1: the preamble and "FCH, DL-MAP, UL-MAP, DCD, or UCD" could be in different channel conditions

Relay Station Modes

- SFSS (Single Frequency Single Segment)
 - Mode I RS doesn't Tx frame-start DL preamble, FCH, DL-MAP, UL-MAP, DCD, and UCD
 - Mode II RS Tx the same frame-start DL preamble, FCH,
 DL-MAP, UL-MAP, DCD, and UCD as those sent by BS
- SFDS or DF (Single Frequency Different Segment or Different Frequency)
 - Mode III RS Tx it's own frame-start DL preamble, FCH, DL-MAP, UL-MAP, DCD, and UCD that were received from BS
 - Mode IV RS Tx it's own frame-start DL preamble, FCH, DL-MAP, UL-MAP, DCD, and UCD

MS Operational Effectiveness in Presence of RS

Effectiveness	RS Mode	Mode I	Mode II	Mode III	Mode IV
BS cell search boundary dete		Same	Conditional ^{*3}	Same	Same
BS cell ID & I identification	C	Same	Same	Same	Same
DL frequency, compensation	C	Same	Conditional*3	Same	Same
DL channel	Only by pilots in its burst	Same	Same	Same	Same
estimation @ MS	Also by preamble and/or pilots in other bursts	Possibly Negative ^{*1}	Possibly Negative ^{*2}	Same	Same
-	ty measurement accuracy of BS	Same	Possibly Negative ^{*3}	Same	Same

Same: No change w.r.t. MS operational effectiveness

Conditional: Could be positive, same or negative depending on the operating environment, e.g., whether it is in range extension model or throughput enhancement model, whether the RS signal received by the MS is much stronger than the BS signal, whether the RNG-RSP (ranging response) message can be used effectively, etc

*1: depend on sources of bursts included in the channel estimation algorithm

*2: due to channel estimation algorithm

*3: MS receives multi-path signals from BS & RS

MS Operational Effectiveness in Presence of RS

Effectiveness	RS Mode	Mode I	Mode II	Mode III	Mode IV
RS cell search boundary dete		N/A	Conditional ^{*3}	Same	Same
RS cell ID & I identification	U	N/A	Same	Same	Same
DL frequency/ compensation	e	Conditional ^{*1}	Conditional*3	Same	Same
DL channel	Only by pilots in its burst	Same	Same	Same	Same
estimation @ MS	Also by preamble and/or pilots in other bursts	Possibly Negative ^{*2}	Possibly Negative ^{*2}	Same	Same
-	ty measurement accuracy of RS	N/A	Possibly Negative ^{*3}	Same	Same

Same: No change w.r.t. MS operational effectiveness

Conditional: Could be positive, same or negative depending on the operating environment, e.g., whether it is in range extension model or throughput enhancement model, whether the RS signal received by the MS is much stronger than the BS signal, whether the RNG-RSP (ranging response) message can be used effectively, etc

*1: time synchronization problem between BS & RS, Doppler shift

*2: due to channel estimation algorithm and sources of bursts included in the algorithm

*3: MS receives multi-path signals from BS & RS

Comparison Analysis in Different Usage Models

- 1. In pure ranging extension usage model
- 2. In pure throughput enhancement usage model
- 3. In mixed usage model

Pure Ranging Extension

- In a RS coverage, MS cannot detect framestart DL preamble from BS; or MS can detect frame-start DL preamble from BS but cannot correctly decode FCH, DL-MAP, UL-MAP, DCD, and UCD from BS
- Mode I RS cannot work in this case

Pure Throughput Enhancement

- In a RS coverage, MS can correctly decode FCH, DL-MAP, UL-MAP, DCD, and UCD from BS
- Mode I, II, III or IV RS could be used in this case

Mixed Usage Model

- In a RS coverage, some MSs are operating in pure ranging extension while some MSs are operating in pure throughput enhancement
- Mode I RS may not work in this case

Recommended Modifications to TR

structure for	The execution shall define a heal-word		
	The specification shall define a backward	RS (M)	
backward	compatible		
compatibilit	frame structure that supports relay links while		
y with	accommodating the legacy access links.		
legacy 16			
mobile			
station			
c y le	ompatibilit with egacy 16 nobile	ompatibilitframe structure that supports relay links while accommodating the legacy access links.egacy 16 nobile	ompatibilitframe structure that supports relay links while accommodating the legacy access links.egacy 16 nobile

Add the following text

- RS shall be required to either transmit the framestart DL preamble plus "FCH, DL-MAP, UL-MAP, DCD, and UCD", or transmit none
- Transmitting AAS Preamble, STC/FHDC Preamble and MIMO Midamble by RS should follow 802.16 specifications defined for BS

Open Issues for Further Discussion During Technical Proposal Phase

- 1. We recommend RS be required to transmit the frame-start DL preamble when it operates with BS at "same frequency, different segment" or "different frequency"
- 2. In pure range extension usage model, we recommend that the RS be required to transmit the frame-start DL preamble
- 3. In SFSS scenario, could RS operate in TYPE II mode while transmitting its own frame-start DL preamble?