IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number:		
C802.16j-06/113		
Date Submitted: 2006-09-20		
Source:		
Tetsu Ikeda, Masahito Asa	Voice:	+81-3-5424-3213
Motorola Japan Ltd.	Fax:	+81-3-3440-0892
3-20-1 Minami-azabu, Minato-ku, Tokyo 106-8573, Japan	E-mail:	Tetsu.Ikeda@motorola.com
Kenji Saito	voice:	+81-46-847-6347
KDDI R&D Laboratories Inc.,	Fax:	+81-46-847-0947
7-1 Hikarinooka, Yokosuka, Kanagawa 239-0847, Japan	E-mail:	<u>saito@kddilabs.jp</u>

Venue:

IEEE 802.16 Session #45, Mont Tremblant, Canada

Base Document:

IEEE 802.16j-06/013

Purpose:

Propose modifications on channel models in baseline document

Notice:

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:

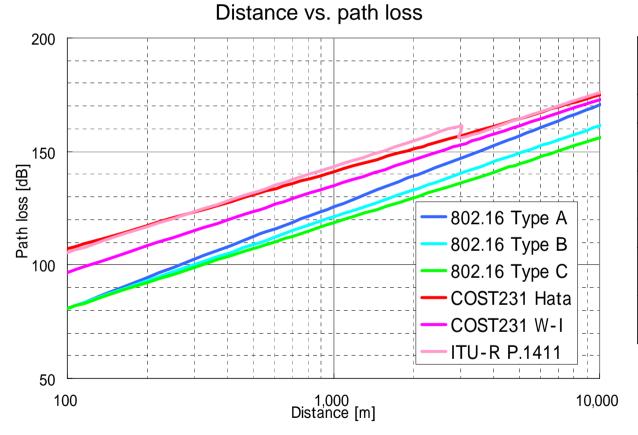
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices/.

Introduction

- This document is a response to chair's call for comments on IEEE 802.16j-06/013 [1]
 - This contribution proposes the modifications on channel models in the baseline document
 - Categories of channel models are reorganized
 - Categories for propagation ART-to-BRT are merged
 - New category for propagation ART-to-BRT is proposed for urban/suburban environment

Channel model categories in baseline document

Category	Links	Description		Referen ce	Note	
Type A		Hilly terrain with moderate-to-heavy tree d	lensities		IEEE 802.16 Type A model	
Type B	BS–MS	Intermediate path-loss condition Flat terrain with light tree densities		Section 2.1.2.1	IEEE 802.16 Type B model	
Type C					IEEE 802.16 Type C model	
Tuma D	BS-RS	Both node-antennas (BS/RS) above	LOS	Section	Modified IEEE 802.16 model	
Type D	RS–RS	rooftop	NLOS	2.1.2.2	Modified IEEE 802.16 model	
Type E	BS–RS RS–RS RS–MS	Only one node-antenna (BS/RS) above rooftop	NLOS	Section 2.1.2.4	Modified IEEE 802.16 model	
Tuno E	RS–RS RS–MS	Both node-antennas (BS/RS) below	LOS Section 2.1.2.5	Advanced LOS		
Type F		rooftop	NLOS	Section 2.1.2.6	Berg/WiNNER	
Type G	RS–RS RS–MS	Indoor Office	NLOS	Section 2.1.2.7	ITU model	


Features of the categories in baseline document

- Category A through E use same path loss model (Erceg/Greenstein model)
 - BS-MS(NLOS) model is divided into three categories (A, B, C)
 - BS-RS/RS-RS/RS-MS(NLOS) model is considered in three environment but it has only one category (E)
 - Path loss (PL) is estimated by the following equation: $PL=A+10 \cdot \cdot \log 10(d/d0) + PLf + PLh$
 - Only antenna height correlation factors (PLh) differ among categories
 - $PLh = -10.8 \cdot log10(h/2) dB$; for Category A and B
 - $PLh = -20 \cdot log10(h/2) dB$; for Category C
 - $PLh = -10 \cdot log10(h/3) dB$; for Category D, $h \le 3m$
 - $PLh = -20 \cdot log10(h/3) dB$; for Category D, h > 3m
 - $PLh = -10.8 \cdot log10(h/2) dB$; for Category E, Terrain Type A and B
 - $PLh = -10 \cdot log10(h/3) dB$; for Category E, Terrain Type C, $h \leq =3m$
 - $PLh = -20 \cdot log10(h/3) dB$; for Category E, Terrain Type C, h > 3m
 - MS antenna height for categories A, B, C is between 2 and 10m
 - MS antenna height should be around 1.5 m

Observation of the categories in baseline document

- Categories in baseline document lacks urban/suburban mobile propagation model such as COST231 Walfisch-Ikegami model, COST231 Hata model or ITU-R P.1411 for BS-MS.
- Urban mobile propagation model will be required for MMR performance evaluations
 - Urban mobile propagation model has generally larger path loss compared to models for FWA (IEEE 802.16 models)

Example of path loss curves

Conditions

Carrier frequency	2,500 MHz
BS antenna height	50 m
MS antenna height	1.5 m
Average building height	30 m
Average building separation	50 m
Street width	25 m
Length of path covered by buildings	90% of path from BS to MS
Area for COST231 Hata	Metropolitan center

Proposed modifications

- •Merge categories for ART-to-BRT model
 - -Category E is merged with categories A,B,C
 - $PLh = -10.8 \cdot log10(h/2) dB$; for Category A and B
 - $PLh = -10 \cdot log10(h/3) dB$; for Category C, $h \leq =3m$
 - $PLh = -20 \cdot log10(h/3) dB$; for Category C, h > 3m
 - -Other modifications for categories A,B,C
 - Extend the range of MS antenna height for h >= 1m
- Add new category for ART-to-BRT model
 - -Add urban mobile propagation model for ART-to-BRT propagation
 - Adopt COST231 Walfisch-Ikegami/Hata model for urban/suburban environment

Categories in the baseline document

Cat.	Links	Description	Note		
A		Hilly terrain with modto-heavy tree densities		IEEE 802.16 Type A	
В	BS-MS	Intermediate path-loss condition		IEEE 802.16 Type B	
С		Flat terrain with light tree densities		IEEE 802.16 Type C	
D	BS–RS	Both node-antennas	LOS	Modified IEEE	
D	D RS–RS	(BS/RS) above rooftop	NLOS	802.16	
Е	BS–RS RS–RS RS–MS	Only one node-antenna (BS/RS) above rooftop	NLOS	Modified IEEE 802.16	
F	RS-RS		LOS	Advanced LOS	
Г	RS-MS		NLOS	Berg/WiNNER	
G	RS–RS RS–MS	Indoor Office	NLOS	ITU model	
L	-				

Proposed categories

Cat.	Links	Descripti	on		Note	
A	BS-MS	Only one node-	Hilly terrain with moderate-to-heavy tree densities		IEEE 802.16 Type A	
В	BS–RS RS–RS	antenna above	Intermediate path-loss condition	NLOS	IEEE 802.16 Type B	
С	RS-MS	rooftop	Flat terrain with light tree densities		Modified IEEE802.16 Type C	
D	BS-MS BS-RS RS-RS RS-MS	Only one node- antenna above rooftop	Urban/suburban environment	NLOS	COST231 Walfisch-Ikegami COST231 Hata ITU-R P.1411	
Е	BS-RS	Both node-antennas (E	2S/PS) shove roofton	LOS	Modified IEEE 802 16	
L	RS–RS	Bour node-antennas (E	55/K5) above roomp	NLOS	Modified IEEE 802.16	
F	RS–RS	Both node-antennas (E	RS/RS) below roofton	LOS	Advanced LOS	
1	RS-MS	Both node-antennas (E	55/K3) below tooltop	NLOS	Berg/WiNNER	
G	RS–RS RS–MS	Indoor Office		NLOS	ITU model	

Proposed path loss equations (1/2)

• Type A, B, C

 $PL = A + 10 \cdot \gamma \cdot \log_{10}(d/d_0) + PL_f + PL_h + s \, dB$

where $d_0 = 100m$ and $d > d_0$. $A = 20 \cdot log_{10}(4 \quad d_0 / \)$ and $= (a - b \cdot h_b + c / h_b)$. is the wavelength in meter and h_b is the base station antenna height, which is between 10m and 80m. "s" is the log-normal shadow fading component in dB. Three propagation scenarios are categorized as Terrain Type A: Hilly terrain with moderate-to-heavy tree densities

Terrain Type B: Intermediate path-loss condition

Terrain Type C: Flat terrain with light tree densities

The corresponding parameters for each propagation scenario are

Parameters for the Type A/B/C

Model Parameter	Terrain Type A	Terrain Type B	Terrain Type C
a	4.6	4	3.6
b	0.0075	0.0065	0.005
с	12.6	17.1	20

Moreover, the correction factors for carrier frequency (PL_f) and receive antenna height (PL_h) are: $\Delta PL_f = 6 \cdot \log_{10}(f/2000) dB$

where f is the carrier frequency in MHz.

 $\Delta PL_h = -10.8 \cdot log_{10}(h/3) dB$; for Terrain Type A and B

 $\Delta PL_h = -10 \cdot \log_{10}(h/3) dB$; for Terrain Type C, $h \le 3m$

 $\Delta PL_h = -20 \cdot log_{10}(h/3) dB$; for Terrain Type C, h > 3m

where h is the receive antenna height between 1m and 10m.

Proposed path loss equations (2/2)

Type D (1) COST 231 Hata model

 $PL = 46.3 + 33.9 \cdot \log_{10}(f) - 13.82 \cdot \log_{10}(h_b) - a(h) + (44.9 - 6.55 \cdot \log_{10}(h_b)) \cdot \log_{10}(d/1000) + Cm \quad dB$

where:

 $a(h) = (1.1 \cdot log_{10}(f) - 0.7) \cdot h - (1.56 \cdot log_{10}(f) - 0.8)$ Cm = 0 for medium sized city and suburban centers with medium tree density = 3 for metropolitan centers f is the carrier frequency in MHz $h_b \text{ is the base station antenna height in meter}$ h is the receive antenna height in meterd is distance in meter

(2) COST 231 Walfisch-Ikegame model

See detail in section 4.4.1 of [3]

(3) ITU-R P.1411

See detail in section 4.2.1 of [4]

• Type E, F, G

Use path loss equations for type D, F, G in [1], respectively

Reasons for modifications

- Merging categories A,B,C and category E
 - Categories A,B,C and category E (in [1]) refer same scenario and same path loss model
 - Only one node antenna is above the rooftop and the other one is below rooftop
 - IEEE802.16 model (Erceg/Greenstein model) is adopted
 - Only antenna height correlation factor differs among categories
 - Antenna height correlation factor should not depend on the type of the node
 - Consider if MS can works as RS, does path loss between BS and MS change?
 - Category E is moved into Categories A, B, C
- Adding new category
 - Urban/suburban model is not covered by [1]
 - Urban/suburban model is required to compare MMR performance with Mobile WiMAX performance
 - COST 231 suburban model is used in Mobile WiMAX performance evaluation
 - COST 231 Walfisch-Ikegami / COST 231 Hata models should be added in channel model categories
 - ITU-R P.1411 should be added in channel model categories
 - ITU-R P.1411 extends the frequency range of Walfisch-Ikegami model over 2GHz

References

[1]IEEE 802.16j-06/013: "Multi-hop Relay System Evaluation Methodology", September, 2006 http://ieee802.org/16/relay/docs/80216j-06_013.pdf

[2]Mobile WiMAX forum, "Mobile WiMAX-Part I: A technical overview and performance evaluation", June, 2006 <u>http://www.wimaxforum.org/news/downloads/Mobile_WiMAX_Part1_Overview_and_Performance.pdf</u>

[3]COST 231 Final report, "Digital Mobile Radio towards Future Generation Systems"

http://www.lx.it.pt/cost231/final_report.htm

[4]RECOMMENDATION ITU-R P.1411-3, "Propagation data and prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300MHz to 100GHz"