Project

Title
MS Network Entry for transparent Relay Station

Date Submitted
2006-11-07

Source(s)
Masato Okuda
Fujitsu Laboratories LTD.
Kamikodanaka 4-1-1, Nakahara-ku
Kawasaki, Japan. 211-8588
Voice: +81-44-754-2811
Fax: +81-44-754-2786
mailto:okuda@jp.fujitsu.com

Chie Ming Chou, Tzu-Ming Lin,
Wern-Ho Sheen, Fang-Ching Ren,
Jen-Shun Yang, I-Kang Fu, Ching-Tang Hsieh
Industrial Technology Research Institute (ITRI)/ National Chiao Tung University (NCTU), Taiwan
195, Sec. 4, Chung Hsing Rd. Chutung, Hsinchu, Taiwan 310, R.O.C.
chieming@itri.org.tw

Re:
IEEE802.16j-06/027: “Call for Technical Proposals regarding IEEEP802.16j”

Abstract
This contribution proposes MS network entry procedures and additional TLVs in transparent Relay Station systems.

Purpose
To propose text to describe MS network entry in non-transparent Relay Station systems

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures [http://ieee802.org/16/ipr/patents/policy.html], including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair [mailto:chair@wirelessman.org] as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site [http://ieee802.org/16/ipr/patents/notices].
MS Network Entry for transparent Relay Station

Masato Okuda

Fujitsu Laboratories LTD.

Introduction

This contribution proposes MS network entry procedure and additional TLVs in transparent RS systems. The transparent RS does not transmit preamble and MAPs. A MS synchronizes with the MR-BS and receives MAPs form it. Therefore, it does not recognize existence of the RS even though it communicates with the MR-BS via the transparent RS.

Figure A-1 illustrates an example of transparent RS system.

![Figure A-1 Example of transparent RS system](image-url)

This contribution describes detail messages sequence and RS and MR-BS behavior during ranging process and additional new TLVs, so that the MR-BS can decide the appropriate route (direct or relay route) for each MS.

Specific Text Changes

Insert the new subclause 6.3.9.16.1 (in “Support for network entry and initialization in relay mode”):

6.3.9.16.1 MS network entry procedures in transparent RS systems

In network entry procedure in transparent RS systems, MS scans for downlink channel and establish synchronization with the MR-BS, then obtains transmit parameters from UCD message as described in 6.3.9.1 through 6.3.9.4.

The initial ranging process shall begin by sending initial-ranging CDMA codes on the UL allocation dedicated for that purpose (for more details see 6.3.10.3).

The code may be received by the MR-BS and some RSs near the MS. RSs receiving the code shall transmit a RNG-REQ to the MR-BS with the RS basic CID. The RNG-REQ message contains ranging status, code attributes and adjustment information such as frequency, timing and transmission power. When a RS receives multiple codes in a frame, the RS sends a RNG-REQ message which contains information of multiple received codes.
When the MR-BS receives ranging code, it shall wait for RNG-REQ from its subordinate RSs for T48 timer. Once T48 timer expired, the MR-BS compares measured signal information at each station to decide the most appropriate route to communicate with the code originating MS. Algorithms to select a route are out of scope of this document.

When the ranging status at the selected route is continue, the MR-BS transmits a RNG-RSP with initial ranging CID. If the ranging code has been successfully received at the RS on the selected route, the MR-BS transmits a RNG-RSP to the RS with the RS’s basic CID in order to notify the RS to receive and relay a RNG-REQ message transmitted on a burst specified with CDMA_Allocation-IE in UL-MAP. If the direct communication is selected, the MR-BS follows sequence described in 6.3.10.3.

Once the RS receives a RNG-REQ containing MSID with initial ranging CID, it forwards the message to the MR-BS with the RS basic CID, so that the MR-BS can identify the RS with which the MS connects.

Receiving the RNG-REQ, the MR-BS assigns basic and primary CID to the MS and sends back the RNG-RSP containing the management messages with the RS basic CID. The RS relays it to the MS with changing the CID to the initial ranging CID.

After assigning the basic and primary CID to the MS, the MS and the MR-BS continue network entry process as described in the 6.3.9.7 through 6.3.9.13 using the MS’s management CIDs. The RS on the selected route shall relay messages between them. The RS may monitor management messages and derive some information for some purpose which is out of scope of this document.

The message sequences chart (Table xxx) and flow charts (Figure xxx, Figure xxx, and Figure xxx) on the following pages define the ranging and adjustment process that shall be followed by compliant RSs and MMR-BSs. For CDMA ranging process between RS and MS, these details can be found in 6.3.10.3.
Table xxxx Ranging and automatic adjustments procedure in MR mode

<table>
<thead>
<tr>
<th>MR-BS</th>
<th>RS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Time to send the initial ranging opportunity]</td>
<td>send map containing Initial Ranging IE</td>
<td>Transmit randomly selected Initial Ranging code in a randomly selected Ranging Slot from available Ranging Region</td>
</tr>
<tr>
<td>[Receive Ranging Code]</td>
<td>compare channel performance and select the best route. send RNG-RSP containing adjustment information, status, ranging code attributes with initial ranging CID. Status = Continue</td>
<td>Transmit randomly selected Initial Ranging code in a randomly selected Ranging Slot from available Ranging Region</td>
</tr>
<tr>
<td>[Receive Ranging Code]</td>
<td>forward the RNG-RSP to MS with IR CID</td>
<td>Transmit Ranging REQ containing MSID and continue with regular Initial network entry</td>
</tr>
<tr>
<td>[Receive Ranging Code]</td>
<td>Identify MS and its connecting RS. Send RNG-RSP containing management CIDs with RS basic CID.</td>
<td>Receive Ranging REQ forwards the Ranging REQ to BS with RS basic CID</td>
</tr>
<tr>
<td>[Receive Ranging Code]</td>
<td>forwards the Ranging REQ to BS with RS basic CID</td>
<td>Receive Ranging REQ containing MSID and continue with regular Initial network entry</td>
</tr>
<tr>
<td>Identify MS and its connecting RS. Send RNG-RSP containing management CIDs with RS basic CID.</td>
<td>learn management CIDs, forward the RNG-RSP to MS with IR CID</td>
<td>Receive Ranging REQ containing MSID and continue with regular Initial network entry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure xxx MS CDMA initial Ranging - RS

Figure xxx MS initial Ranging - RS
Figure xxx MS CDMA initial Ranging – MR-BS

Figure xxx MS initial Ranging – MR-BS
Insert the following rows into Table 364 at 11.5 RNG-REQ TLV:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type (1 byte)</th>
<th>Length</th>
<th>Value (variable-length)</th>
<th>PHY Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received Ranging Codes</td>
<td>TBA</td>
<td>Variable</td>
<td>Received Ranging Codes is a compound TLV value that indicates received code information.</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Timing Adjust</td>
<td>TBA.1</td>
<td>4</td>
<td>Tx timing offset adjustment (signed 32-bit). The amount of time required to adjust SS transmission so the bursts will arrive at the expected time instance at the BS. Units are PHY specific (see 10.3).</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Power Level Adjust</td>
<td>TBA.2</td>
<td>1</td>
<td>Tx Power offset adjustment (signed 8-bit, 0.25 dB units) Specifies the relative change in transmission power level that the SS is to make in order that transmissions arrive at the BS at the desired power. When subchannelization is employed, the subscriber shall interpret the power offset adjustment as a required change to the transmitted power density.</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Offset Frequency Adjust</td>
<td>TBA.3</td>
<td>4</td>
<td>Tx frequency offset adjustment (signed 32-bit, Hz units) Specifies the relative change in transmission frequency that the SS is to make in order to better match the BS. (This is fine-frequency adjustment within a channel, not reassignment to a different channel.)</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Ranging Status</td>
<td>TBA.4</td>
<td>1</td>
<td>Used to indicate whether uplink messages are received within acceptable limits by BS. 1 = continue, 2 = abort, 3 = success</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Ranging code attributes</td>
<td>TBA.5</td>
<td>4</td>
<td>Bits 31:22 – Used to indicate the OFDM time symbol reference that was used to transmit the ranging code. Bits 21:16 – Used to indicate the OFDMA subchannel reference that was used to transmit the ranging code. Bits 15:8 – Used to indicate the ranging code index that was sent by the SS. Bits 7:0 – The 8 least significant bits of the frame number of the OFDMA frame where the SS sent the ranging code.</td>
<td>OFDMA</td>
</tr>
</tbody>
</table>
References
