Project

Title
A proposal for synchronous MBS transmission in MR

Date Submitted
2006-11-07

Source(s)
Keiichi Nakatsugawa
Fujitsu Laboratories Ltd.
Kamikodanaka 4-1-1,
Kawasaki, 211-8588, Japan
Voice: +81-44-754-2811
Fax: +81-44-754-2786
nakatsugawa@jp.fujitsu.com

Yuefeng Zhou, Sunil Vadgama
Fujitsu Laboratories of Europe Ltd.
Hayes Park Central
Hayes Middx., UB4 8FE, UK
Voice: +44 (0) 20 8573 4444
FAX: +44 (0) 20 8606 4539
Yuefeng.zhou@uk.fujitsu.com
Sunil.Vadgama@uk.fujitsu.com

Re:
IEEE802.16j-06/027: “Call for Technical Proposals regarding IEEE802.16j”

Abstract
This contribution proposes the method of synchronization for MBS transmission among BS and RS.

Purpose
Text proposal for P802.16j Baseline Document.

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures [http://ieee802.org/16/ipr/patents/policy.html], including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site [http://ieee802.org/16/ipr/patents/notices].
A proposal for synchronous MBS transmission in MR
Keiichi Nakatsugawa, Fujitsu Laboratories LTD.
Yuefeng Zhou, Sunil Vadgama, Fujitsu Laboratories of Europe LTD.

Introduction
This contribution proposes the method of synchronization for MBS transmission among MR-BS and RS.

Details
In Multicast and Broadcast Service (MBS) for MR, especially for Multi-BS MBS, data traffic of MBS will be broadcasted among not only BS but also RS.

As mentioned in section 6.3.23.2.2 “Performance enhancement with macro diversity” of 802.16e specification [1], from the receiving performance point of view, transmission of broadcast data from MR-BS and RS should be synchronized.

In order to synchronize the timing of MBS data sent from both MR-BS and RS, MBS data should be transmitted with three steps, as shown in Fig. 1.

Fig. 1 Synchronized transmission for MBS traffic in MR
For the following method, it assumes that frame synchronization among MR-BS and RS is established in a same MBS zone.

(1)Pre-transmission from MR-BS to RS
Firstly, MR-BS sends MBS data to RS as pre-transmission earlier than formal transmission time. For this pre-transmission, MR-BS use a multicast connection corresponded to RS multicast CID [2] over the R-DL.

(2-1)MR-BS waits for relay processing in RS and (2-2)Relay processing in RS
It takes D_R that MBS data received at RS is relayed to MS(MS2 in Fig.1), in that period, MR-BS maintains MBS data sent to RS as pre-transmission and waits for relay processing in RS. Here, it assumes that RS relays MBS data within a fixed D_R delay.

(3)Synchronous transmission from both MR-BS and RS.
Secondly, after D_R since pre-transmission, RS send MBS data to MS (MS2) and MR-BS also send same MBS data synchronously. For these transmissions, MR-BS and RS use broadcast connection for MBS over the access link.

In order for MR-BS to wait D_R, MR-BS needs to know D_R of RS. The value of D_R will be given to the MR-BS as a capability parameter of SBC-REQ message.

Note that additional capability parameter for RS is proposed with other contribution [3].

Consider the case that there are multiple RS exist and each delay of RS are not same, as shown in Fig.3. In such case, MR-BS shall examine the maximum delay of RS and notify all RS of it. After the time notified by MR-BS,
all RS and MR-BS formally transmit MBS data to MS synchronously with the slowest RS. Such the maximum delay will be notified in SBC-RSP message.

If the MR-BS detects that the maximum delay of RS is replaced with the greater value, MR-BS may send unsolicited SBC-RSP message and notifies all RS of it.

Conclusion

According to this transmission method, MBS data which is received at MS under MR-BS or RS is synchronized exactly. If MS moves between MR-BS and RS, MS can receive MBS data without any discontinuance.
Specific text changes

- 6.3.23.2.2 Performance enhancement with macro diversity

Insert the following text at the end of 6.3.23.2.2:

For MR, MBS transmission in a group of MR-BS and RS shall also be synchronized. However, relay process of RS may cause one or more frames delay. Therefore, MR-BS needs to know the delay of RS and firstly sends MBS data over the R-DL as pre-transmission to RS earlier than formal transmission time. MR-BS waits for RS while processing of relay, then formally sends MBS data over the access link to MS synchronized with RS.

In the case that there are multiple RS exist and each delay of RS are not same, MR-BS shall examine the maximum delay of RS and notify all RS of it. After the notified duration, all RS and MR-BS formally transmit MBS data over access link to MS synchronously. Such the maximum delay is notified in SBC-RSP message. If the MR-BS detects that the maximum delay of RS is replaced with the greater value, MR-BS sends unsolicited SBC-RSP message and notifies all RS of it.

- 11.8 SBC-REQ/RSP management message encodings

Insert new subclause 11.8.3.7:

11.8.3.7.X Maximum RS Downlink Delay for MBS Zone

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA</td>
<td>1</td>
<td>Maximum RS Downlink Delay for MBS Zone (unit: frame)</td>
<td>SBC-RSP</td>
</tr>
</tbody>
</table>

References

[1] IEEE 802.16e-2005
[2] IEEE C802.16j-06/289, “RS Multicast CID for 802.16j”