Project	IEEE 802.16j Mobile Multihop Relay Task Group							
Title	itle Rate Compatibility and Incremental Redundancy HARQ for 802.16j LDPC							
Date	2006-11-06							
Source(s)	Wataru MatsumotoVoice:Toshiyuki KuzeFax:Mitsubishi Electric CorpMatsumo5-1-1 Ofuna Kamakura, KanagawaKuze.Tos2478501, JapanKuze.Tos	+81-467-41-2074 +81-467-41-2136 to.Wataru@aj.MitsubishiElectric.co.jp hiyuki@ah.MitsubishiElectric.co.jp						
	Koon Hoo Teo, Jinyun ZhangVoice:Mitsubishi Electric Research LabFax:201 Broadway{teo, jzhaCambridge, MA 02139 USA	617-621-7527, 617-621-7595 617-621-7550 ang}@merl.com						
Re:	Response to the call for proposal of the 802.16j relay Proposals regarding IEEE Project P802.16j", Octobe	y TG (i.e., IEEE 802.16j-06/027, "Call for Technical er 15, 2006).						
Abstract	This contribution describes an enhancement to the c	current IEEE 802.16e LDPC.						
Purpose	To enhance the current IEEE 802.16e LDPC as sug	gested in this contribution.						
Notice	This document has been prepared to assist IEEE 80 binding on the contributing individual(s) or organizati change in form and content after further study. The o withdraw material contained herein.	2.16. It is offered as a basis for discussion and is not on(s). The material in this document is subject to contributor(s) reserve(s) the right to add, amend or						
Release	The contributor grants a free, irrevocable license to t contribution, and any modifications thereof, in the cre the IEEE's name any IEEE Standards publication ev and at the IEEE's sole discretion to permit others to Standards publication. The contributor also acknowle public by IEEE 802.16.	he IEEE to incorporate material contained in this eation of an IEEE Standards publication; to copyright ir en though it may include portions of this contribution; reproduce in whole or in part the resulting IEEE edges and accepts that this contribution may be made						
Patent Policy and Procedur	The contributor is familiar with the l (http://ieee802.org/16/ipr/patents/policy.html , include the known use of patent(s), including assurance from the patent holder or applicant w both mandatory and optional portions of the sta patent information that might be relevant to th delays in the development process and increas approved for publication. Please notify the C possible, in written or electronic form, if p application) might be incorporated into a draft Working Group. The Chair will disclose t <http: 16="" ieee802.org="" ipr="" notices="" patents="">.</http:>	EEE 802.16 Patent Policy and Procedure including the statement "IEEE standards ma g patent applications, provided the IEEE receive with respect to patents essential for compliance wi andard." Early disclosure to the Working Group of e standard is essential to reduce the possibility for se the likelihood that the draft publication will be thair <mailto:chair@wirelessman.org> as early a patented technology (or technology under pate standard being developed within the IEEE 802.16 his notification via the IEEE 802.16 web si</mailto:chair@wirelessman.org>						

Rate Compatibility and Incremental Redundancy HARQ for 802.16j LDPC

Wataru Matsumoto ,Toshiyuuki Kuze

Mitsubishi Electric Corp 5-1-1 Ofuna Kamakura, Kanagawa 2478501, Japan

Koon Hoo Teo, Jinyun Zhang Mitsubishi Electric Research Lab 201 Broadway Cambridge, MA 02139 USA

Table of contents

1. Introduction	2
2. Summary of Proposal	3
3. Performance Results	3
4. Proposed Additions	5
6.3.17 No change necessary	5
6.3.17.1 No change necessary	5
6.3.17.2 No change necessary	5
6.3.17.3 No change necessary	5
8.4.9.2.5.1 Code description (add in)	5
8.4.9.2.5.3.1 Packet encoding for HARQ (insert)	6
8.4.9.2.5.4 Subpacket generation for LDPC (insert)	6
8.4.9.2.5.4.1 Symbol separation (insert)	7
8.4.9.2.5.4.2 Symbol selection (insert)	7
8.4.15 Optional HARQ support	7
8.4.15.2.2 Optional IR HARQ for LDPC (insert)	7
5. Conclusions	8

Rate Compatibility and Incremental Redundancy HARQ for 802.16j LDPC

Wataru Matsumoto ,Toshiyuuki Kuze

Mitsubishi Electric Corp 5-1-1 Ofuna Kamakura, Kanagawa 2478501, Japan

Koon Hoo Teo, Jinyun Zhang Mitsubishi Electric Research Lab 201 Broadway Cambridge, MA 02139 USA

1. Introduction

One of the most important advantages of LDPC is its higher decoding efficiency compared to Turbo codes. Therefore, a high throughput link such as BS-RS or RS-RS could be achieved with lower hardware cost. Unfortunately, current 802.16e LDPC is not rate compatible and does not support 1/3 code rate. In addition, the current LDPC only support HARQ with chase combining but not incremental redundancy (IR).

1/3 code rate and IR HARQ are known to improve reliability or robustness in links with hostile channel conditions.

Figure 1: The merits of LDPC and RC-LDPC

We proposed an enhanced version of 802.16 LDPC using the current 802.16 LDPC as the baseline. This enhanced LDPC shown in Figure 1, which we called rate compatible RC-LDPC will support 1/3 rate code and also

2006-11-06

provide the mean to support HARQ with incremental redundancy to provide the BS-RS and RS-RS links operating in hostile channel condition, with high throughput, improved robustness and increased decoding efficiency.

2. Summary of Proposal

We proposed the construction of an extended parity-check matrix of the RC(Rate-Compatible)-LDPC codes to achieve good performance for wide range of code word length and code rate. The parity-check matrix construction method can support code rates ranging from 1/3 to 4/5 and codeword lengths ranging from 288 bits to 2304bits. The RC-LDPC codes are constructed using a code-rate 1/2 parity-check matrix for code-rate greater than or equal to 1/2. For code rate smaller than $\frac{1}{2}$ an additional parity check matrix is being extended to the $\frac{1}{2}$ parity-check matrix.

The proposed RC-LDPC uses the current 802.16 LDPC as the baseline matrix. It also uses the same four sub-packets protocol for its HARQ operation. The proposal provide some small additions and require no change to the current 802.16e LDPC.

	LDPC	TC	Complexity of LD / Complexity of TC
Algorithm	LBP Min-Sum+Offset	Max Log Map +extrinsic scaling	
Number Iterations	20	8	
Total cost (R=1/3)	38.5K x 20 = 770K	171K x 8 = 1368K	56%
Total cost (R=1/2)	28.8K x 20 = 576K	171K x 8 = 1368K	42%
Total cost (R=3/4)	20.6K x 20 = 412K	171K x 8 = 1368K	30%

3. Performance Results

Table 1:Operations count comparison of sub-optimal decoders LDPC and TC decoders

Figure 2: Performance for RC LDPC codes based on the 16e LDPC codes

Figure 3: Performance of RC LDPC codes based on the 16e LDPC

4. Proposed Additions

6.3.17 No change necessary

6.3.17.1 No change necessary

6.3.17.2 No change necessary

6.3.17.3 No change necessary

8.4.9.2.5.1 Code description (add in)

We propose the parity check matrix for rate-compatible LDPC(RC-LDPC) codes using the parity-check matrix for rate-1/2 specified in the 802.16e as the following Figure 4.

Extend for Code Rate=1/3

-1	94	73	-1	-1	-1	-1	-1	55	83	-1	-1	7	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	27	-1	-1	-1	22	79	9	-1	-1	-1	12	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	24	22	81	-1	33	-1	-1	-1	0	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
61	-1	47	-1	-1	-1	-1	-1	65	25	-1	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	39	-1	-1	-1	84	-1	-1	41	72	-1	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	46	40	-1	82	-1	-1	-1	79	0	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	95	53	-1	-1	-1	-1	-1	14	18	-1	-1	-1	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	11	73	-1	-1	-1	2	-1	-1	47	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
12	-1	-1	-1	83	24	-1	43	-1	-1	-1	51	-1	-1	-1	-1	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	94	-1	59	-1	-1	70	72	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	7	65	-1	-1	-1	-1	39	49	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
43	-1	-1	-1	-1	66	-1	41	-1	-1	-1	26	7	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	17	-1	9	-1	-1	-1	20	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	36	-1	-1	-1	-1	-1	-1	7	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	5	-1	-1	-1	-1	-1	-1	5	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	23	-1	11	-1	-1	-1	23	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	5	-1	32	-1	-1	-1	38	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1
-1	-1	7	-1	-1	-1	-1	-1	-1	19	-1	-1	-1	-1	-1	-1	-1	Ó	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	31	-1	23	-1	-1	-1	48	-1	-1	-1	-1	-1	-1	Ó	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	29	-1	37	-1	-1	-1	7	-1	-1	-1	-1	-1	-1	-1	0 0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1
-i	-1	6	-1	-1	-1	-1	-1	-1	3	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0 0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1
i	-1	1	-1	-1	-1	-1	-1	-1	2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	'n	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	'n	-1	-1
_1	-1	-1	-1	-1	37	-1	26	-1	-1	-1	ģ	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1
_1	-1	3	-1	-1	-1	-1	-1	-1	6	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0

Figure 4 Parity check matrix for rate compatible LDPC codes

Let **u** and **r** be information bits as $\mathbf{u} = (u_1 \ u_2 \ \cdots \ u_K)$ and parity bits as $\mathbf{r} = (r_1 \ r_2 \ \cdots \ r_M)$, respectively. And Let **v** be a systematic codeword such that:

 $\mathbf{v} \coloneqq (u_1 \quad u_2 \quad \cdots \quad u_K \quad r_1 \quad r_2 \quad \cdots \quad r_M)$. satisfying $\mathbf{H}_M \cdot \mathbf{v}^T = \mathbf{0}$.

The RC-LDPC encoder consists of a common LDPC encoder and a puncturing device. The decoder for RC-LDPC codes is the same as an ordinary LDPC decoding algorithm with received LLR=0 for puncturing bits. A set of code rates and un-puncturing bits set \hat{r} for RC-LDPC codes can be represented by:

For the number of un-puncturing bits $i(\leq M/2)$, $\hat{\mathbf{r}} = \{\hat{r}_l\}$,

 $q = \{q_y : 8,4,6,2,7,3,5,1\};$ $x = q_0, y = 0;$ For l = 1 to iIf $x \le M/2$ then $\hat{r}_l = r_x, x = x + 8;$ Else $x = q_y, y = y + 1;$ Endif
End for
For the number of un-puncturing bits $i(>M/2), \quad \hat{r} = \{r_l\}, \text{ for } M/2 \le l \le i.$

8.4.9.2.5.3.1 Packet encoding for HARQ (insert)

The reordered codeword for RC-LDPC codes are defined such as

 $\overline{\mathbf{v}} := \begin{pmatrix} \overline{v}_1 & \overline{v}_2 & \cdots & \overline{v}_{K+M} \end{pmatrix} = \begin{pmatrix} u_1 & u_2 & \cdots & u_K & \hat{r}_1 & \hat{r}_2 & \cdots & \hat{r}_M \end{pmatrix}.$

8.4.9.2.5.4 Subpacket generation for LDPC (insert)

Figure 5: Block diagram of subpacket generation

A subblock	Y subblock	W subblock			

Figure 6: Subblocks for RC-LDPC codes

8.4.9.2.5.4.1 Symbol separation (insert)

All of the encoded symbols shall be demultiplexed into three subblocks denoted A, Y, and W.

A, Y, and W subblocks are defined as

 $\mathbf{A} := \begin{pmatrix} u_1 & u_2 & \cdots & u_K \end{pmatrix}, \mathbf{Y} := \begin{pmatrix} \hat{r}_1 & \hat{r}_2 & \cdots & \hat{r}_{M/2} \end{pmatrix}, \text{ and } \mathbf{W} := \begin{pmatrix} \hat{r}_{M/2+1} & \hat{r}_{M/2+2} & \cdots & \hat{r}_M \end{pmatrix}.$

8.4.9.2.5.4.2 Symbol selection (insert)

same as 8.4.9.2.3.4.4

8.4.15 Optional HARQ support

8.4.15.2.2 Optional IR HARQ for LDPC (insert)

The following optional modes exist for HARQ.

Incremental redundancy for LDPC codes -specified in section 8.4.9.2.5.4

5. Conclusions

LDPC support high throughput with less hardware complexity and lower cost compared to Turbo Codes. Our RC-LDPC is an enhanced version of the current 802.16e LDPC. It uses the 802.16e LDPC as a baseline. RC-LDPC is rate compatible and can provide 1/3 code rate and Hybrid ARQ with incremental redundancy. For operation in very hostile channel conditions as shown in Figure 7, such as those encountered by mobile RS or non-LOS fixed RS and nomadic RS, RC-LDPC would be able to provide improved robustness to the BS-RS or RS-RS links.

Figure 7: RC-LDPC is best for hostile channel conditions