#### Cooperative RS Transmission Scheme on IEEE 802.16j

#### IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number:

IEEE: C802.16j-06/294

Date Submitted:

2006-11-07

#### Source:

Mingshu Wang, Anxin Li,

Xiangming Li, Hidetoshi Kayama

#### **DoCoMo Beijing Labs**

7/F, Raycom Infotech Park A, No.2 Kexueyuan South Road,

Haidian District, Beijing, 100080, China

#### Venue:

IEEE 802.16 Session #46, Dallas, TX, USA

Base Document:

Available soon

#### Purpose:

Recommend cooperative RS transmission scheme in response to the call for technical proposals (IEEE 802.16j-06/027).

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

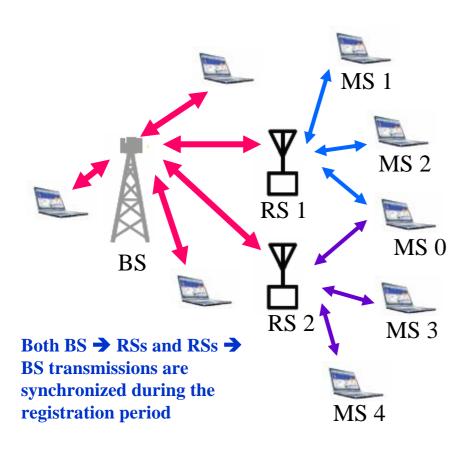
#### Release:

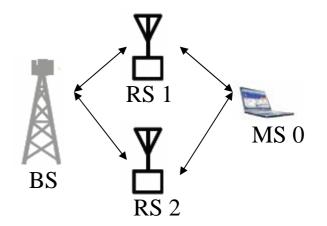
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

#### IEEE 802.16 Patent Policy:

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <<u>http://ieee802.org/16/ipr/patents/policy.html</u>>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <<u>mailto:chair@wirelessman.org</u>> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <<u>http://ieee802.org/16/ipr/patents/notices</u>>.

Voice: +8610-82861501 Fax: +8610-82861506 E-mail: {wang, liax, lixm, kayama}@docomolabs-beijing.com.cn


# Cooperative RS Transmission Scheme on IEEE 802.16j


# DoCoMo Beijing Labs Nov. 2006

## Introduction

- Cooperative transmission can increase network capacity by using distributed MIMO technologies
- The key problems to implement cooperative transmission in the MMR system
  - How to deal with asynchrony among the transmission from cooperative RSs to the SS/MS
  - How to determine which and how many RSs involved in the cooperative transmission

### Usage Scenario





Using the proposed method, RS1 and RS2 cooperatively communicate with BS and MS 0.

Directly connected to BS



Connected to RS1

Simultaneously, RS1 also relays for MS1 and MS2; RS2 also relays for MS3 and MS4.

Connected to RS2

## Proposed Cooperative RS Transmission

#### **Step 1 (Connection Step):**

- Gather information of the received SNR and transmission delay of all possible relay nodes
  - ① In the downlink sub-frame add a cooperative indicator (CI)
  - ②  $RS_i \rightarrow MS/SS$  forward the packet at  $T_{i0}$
  - (3) MS/SS records the received time from each  $RS_i$ ,  $T_{i1}$ , and measures the received  $SNR_{i1}$
  - (4) MS/SS $\rightarrow$ RS<sub>i</sub> sends back a control packet at T<sub>i2</sub> including SNR<sub>i1</sub>,(T<sub>i2</sub>-T<sub>i1</sub>)
  - (5)  $RS_i$  records the received time  $T_{iE}$
  - 6 RS<sub>i</sub>  $\rightarrow$  BS forwards the packet adding (T<sub>iE</sub> T<sub>i0</sub>)
  - $\bigcirc$  BS measures the received SNR<sub>i2</sub>

**Delay i1** = [(TiE-Ti0)-(Ti2-Ti1)]/2

CI: suggested to use 2 bits. (00: No; 11: Yes; 01 and 10 are reserved)

## Proposed Cooperative RS Transmission

## **Step 2(Selection Step):**

- BS makes decision on whether cooperative transmission will be executed and which relay nodes are involved in the transmission
- i. Initially select all the RSs that can satisfy

$$\begin{cases} SNR_{i1} \ge A * S_1 \\ SNR_{i2} \ge A * S_2 \end{cases} \quad 0 < A < 1$$

 $S_1 = \max(SNR_{i1})$   $S_2 = \max(SNR_{i2})$ 

If the number of RSs selected in i. step exceeds a threshold  $N_R$ 

ii. Only N<sub>R</sub> RSs with largest J<sub>i</sub> are finally selected

A is suggested to be 0.3;  $N_R$  is suggested to be 2

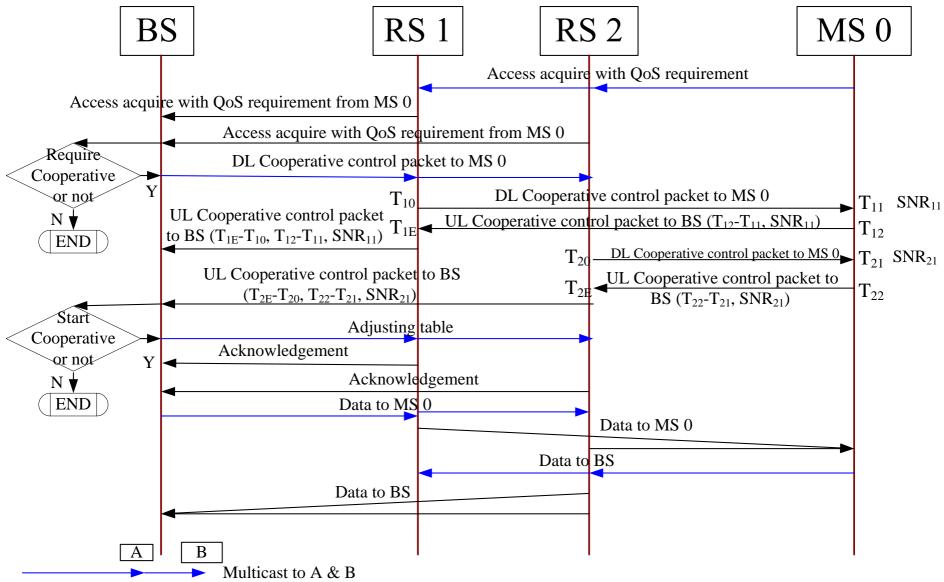
$$J_i = \frac{SNR_{i1}}{S_1} * \frac{SNR_{i2}}{S_2}$$

## Proposed Cooperative RS Transmission

## **Step 3(Information Step):**

• All the selected relay nodes are informed with an adjusting table to adjust their downlink transmission timing to be synchronized in the cooperative transmission.

 Table 1. Adjusting Table


|              | Destination | Total Num. | Order of | Adjust   |
|--------------|-------------|------------|----------|----------|
| <b>RS ID</b> | MS/SS ID    | of RS      | the RS   | delay i1 |

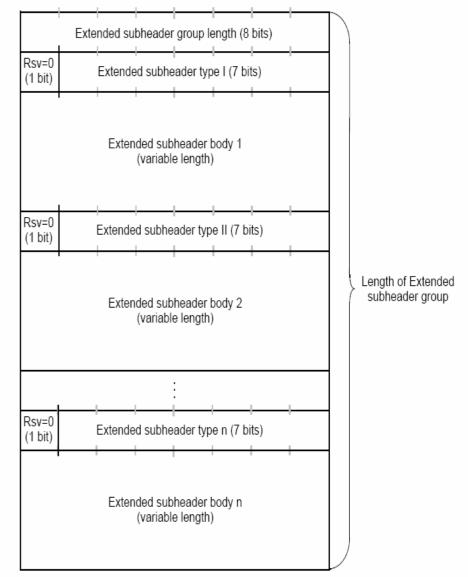
### **Step 4 (Cooperative Transmission Step)**:

• More than 1 RSs are used for the transmission between the BS and the dedicated MS. Cooperative transmission is in both uplink and downlink.

Assume Delay i1≤Delay i2, Adjust delay i1= Delay i2-Delay i1 Adjust delay i2=0

## Message Flow in Cooperative RS Transmission




## Packet Format in Cooperative RS Transmission

#### **Generic MAC header format**



ESF: Extended subheader field. If ESF = 0, the extended subheader is absent. If ESF = 1, the extended subheader is present and will follow the GMH immediately.

ESF is used to indicate DL cooperative control packet/ UL cooperative packet / DL RS Adjusting table/ UL RS acknowledgement



#### **Extended subheader group format**

## Packet Format in Cooperative RS Transmission

#### Table 1 Description of extended subheaders types (DL)

| ES type | Name                       | ES body size | Description                          |
|---------|----------------------------|--------------|--------------------------------------|
| 6       | cooperative control packet | 1byte        | All reserved                         |
| 7       | RS Adjusting table         | 1 byte       | Indicate the payload length in bytes |

#### **Payload of RS Adjusting table**

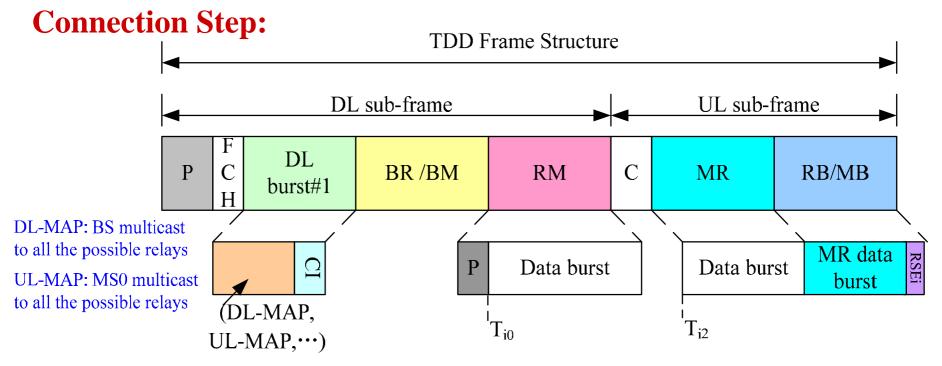
| 1 byte | 1 byte | 1 byte | 1 byte | 2 bytes |       | 1 byte | 1 byte | 2 bytes |
|--------|--------|--------|--------|---------|-------|--------|--------|---------|
| DID    | NRS    | RSID 1 | SN 1   | AD1     | • • • | RSID N | SN N   | AD N    |

DID: Destination MS/SS IDNRS: Number of RSRSID i: *i*-th cooperative RS IDSN i: index of STBC assigned to *i*-th cooperative RSAD i: Retract transmission time of *i*-th cooperative RS (unit ns)

## Packet Format in Cooperative RS Transmission

#### Table 2 Description of extended subheaders types (UL)

| ES type | Name                       | ES body size | Description                          |
|---------|----------------------------|--------------|--------------------------------------|
| 6       | cooperative control packet | 1byte        | Indicate the payload length in bytes |
| 7       | RS Acknowledgement         | 1byte        | All reserved                         |


#### **Payload of cooperative control packet**

1 byte1 byte3~6 bytes2 bytes2 bytesSIDRSIDSNRPSTRSE

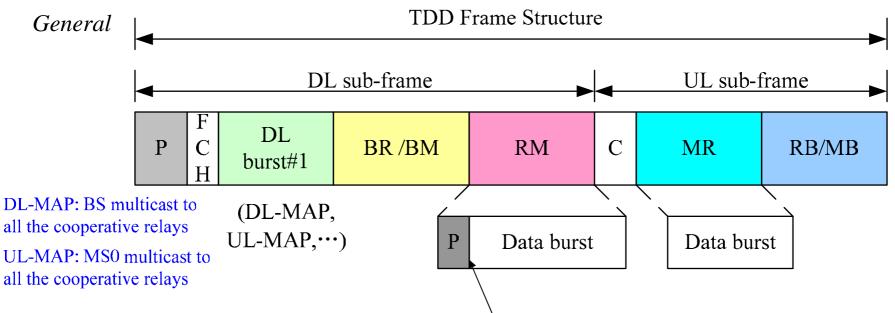
SID: Source MS/SS ID RSID : ID of the possible RS SNR: Received SNR of the possible RS PST:  $T_{i2}$ - $T_{i1}$  (unit: ns) RSE: ReServed for Enhence of the possible RS Should be added by the possible RS. The content is T<sub>iE</sub>-T<sub>i0</sub> (unit: ns)

Where i denotes the ID of RS

# Frame Structure in Cooperative RS Transmission



CI: Cooperative Indicator; Initiate the cooperative connection step

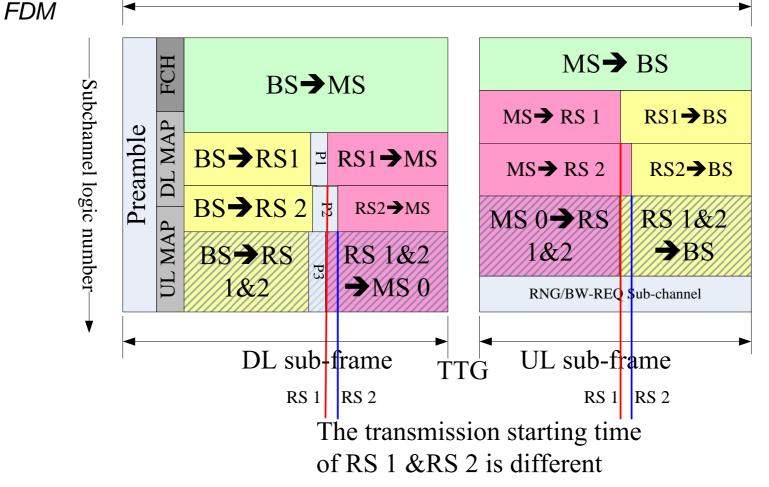

RSE i: including  $T_{i0}$  and  $T_{iE}$  MR data burst: including SNR<sub>i1</sub>,  $T_{i1}$  and  $T_{i2}$ 

#### Frame structure in [1] is used for illustrations.

[1] C80216mmr-05\_005r2, A Recommendation on PMP Mode Compatible Frame Structure.

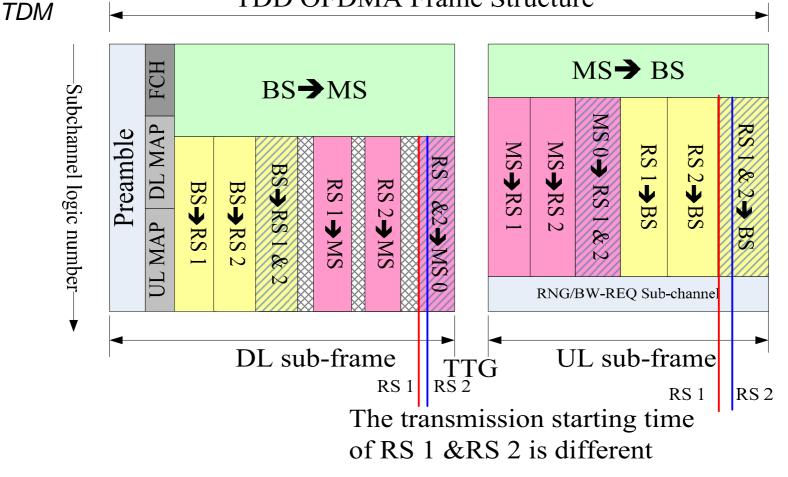
## Frame Structure in Cooperative RS Transmission

#### **Transmission Step:**




In both uplink and downlink, RS 1 and RS 2 are allocated the same chunk for cooperative transmission and different chunks for other MSs

Frame structure in [1] is used for illustrations.


### Frame Structure in Cooperative RS Transmission Transmission





### Frame Structure in Cooperative RS Transmission Transmission

**TDD OFDMA Frame Structure** 



# Merits of the Proposed Cooperative RS Transmission Scheme

- The proposed cooperative RS transmission scheme can
  - Realize synchronized transmission.
  - Balance the received performance and the system capacity.
- No hardware change in MS is required when the proposed cooperative transmission is used