<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A proposal for timing compensation of sleep mode in MR</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2007-03-05</td>
</tr>
</tbody>
</table>

| Source(s) | Keiichi Nakatsugawa
Fujitsu Laboratories Ltd.
Kamikodanaka 4-1-1,
Kawasaki, 211-8588, Japan | Voice: +81-44-754-2811
Fax: +81-44-754-2786
nakatsugawa@jp.fujitsu.com |
| Source(s) | Yuefeng Zhou
Fujitsu Laboratories of Europe Ltd.
Hayes Park Central
Hayes Middx., UB4 8FE, UK | Voice: +44 (0) 20 8573 4444
FAX: +44 (0) 20 8606 4539
Yuefeng.zhou@uk.fujitsu.com |
| Source(s) | Shiao-Li Tsao, Fang-Ching Ren, Wern-Ho Sheen, I-Kang Fu
National Chiao Tung University
(NCTU) /Industrial Technology
Research Institute (ITRI), Taiwan
No. 195, Sec. 4, Chung Hsing Rd.,
Chutung, Hsinchu, Taiwan 310,
R.O.C. | Voice: +886-3-5712121-54717
Fax: +886-3-5721490
E-mail: sltsao@cs.nctu.edu.tw, frank_ren@itri.org.tw |

Re: IEEE802.16j-07/007r2: “Call for Technical Comments and Contributions regarding IEEE Project 802.16j”

Abstract
This contribution proposes the method of timing compensation for sleep mode in MR.

Purpose
Text proposal for 802.16j Baseline Document

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

A proposal for timing compensation of sleep mode in MR

[This contribution propose a harmonization text proposal on Sleep Mode Timing Compensation in MR]

Introduction

This contribution proposes a method of timing compensation for timing-related control function, such Sleep mode. In 802.16e specification, several messages such as MOB_TRF-IND are received at the pre-notified timing. However, in a non-transparent RS system[1], the message processing delay in RS makes it hard to fulfill that reception timing requirement. In order for MS to receive messages at the pre-notified timing, MR-BS compensates the timing when MS can receive messages with taking account of RS processing delay.

Details

In this proposed method, based on the following assumptions:

- The MR system is a non-transparent RS system [1].
- The RS can not relay message and data within the current frame. The message is delayed for fixed duration on account of relay processing in the RS.
- Each frame sent by MR-BS and RS are synchronized and has same frame number.

Timing compensation for sleep mode

As shown in Fig. 1, MS enters Sleep mode by receiving MOB_SLP-RSP message involving “Start Frame Number” parameter from MR-BS. \(F_b \), the beginning frame of first Sleep Window(SW), is decided by the Start Frame Number.

According to the above assumption, MOB_TRF-IND message sent from MR-BS will delay of “\(D_r \)” in RS, it is received at MS \(D_r \) frame later. Therefore, it depends on the size of Listening Window(LW) and the timing of that MOB_TRF-IND message is sent from MR-BS, MOB_TRF-IND message does not reach within LW of MS correctly and MS fails to receive the message.
To avoid this problem, the timing of LW managed in MR-BS and MS should be compensated. Proposed method is shown in Fig. 2.
When MR-BS receives MOB_SLP-REQ message and decides Start Frame Number, MR-BS decides normal Start Frame Number value with regular manner at first and notifies MS of it by MOB_SLP-RSP message. And, MR-BS also decides modified Start Frame Number value for itself. Modified value will be decided to that the SW and LW managed internally in MR-BS are just shifted D_R earlier from the SW and LW of MS.

With this compensation method, MOB_TRF-IND sent over the R-DL at any frame within LW managed in MR-BS is received successfully within MS’ LW via RS relaying.

In order to decide the modified Start Frame Number value in MR-BS, MR-BS needs to know D_R of RS. The value of RS’s delay is given to MR-BS as a capability parameter of SBC-REQ message.

Consider the case that multiple RSs exist between the MR-BS and MS, as shown in Fig. 3.

In this case, the MR-BS calculates the cumulative processing delay of the RSs between the MR-BS and the MS. As shown in Fig. 3, the cumulative delay “D_C” is equal to $D_R + D_{re}$. The MR-BS decides modified Start Frame Number value for itself. Modified value will be decided to that the SW and LW managed internally in MR-BS are just shifted D_C earlier from the SW and LW of MS.
Conclusion

According to this compensation method, the MOB_TRF-IND messages are surely delivered from MR-BS to MS through RS relaying.

Specific text changes

Insert the following text at the end of 6.3.21.7:

6.3.21.7 Relay support for MS sleep mode

In MR networks, the sleep mode shall be centrally controlled by the MR-BS in the presence of centralized or distributed scheduling.

For MR, to guarantee the sleep-mode MS receiving traffic indication in time in the presence of processing delay of RS, which is \(D_8 \), the MR-BS may transmit MOB_TRF-IND over R-DL and access link separately. If multiple RSs exist, the MR-BS shall find the cumulative processing delay of RSs, which is \(D_C \), for the path between the MR-BS and the MS. The MR-BS sends MOB_TRF-IND over the R-DL as a pre-transmission \(D_8 \) or \(D_C \) frame earlier than the normal MOB_TRF-IND transmission time over access link. The RS delay, \(D_8 \), is given to MR-BS as a capability parameter of SBC-REQ message.

References

[1] IEEE 802.16j-06/026r2, “P802.16j Baseline Document”