Abstract
The contribution defines the signaling required to enable definition of DL & UL relay zones, as introduced in the baseline document in meeting #46. It also defines the structure of the DL_Frame_Prefix message conveyed in the R-FCH.

Purpose
For discussion and approval of inclusion of the proposed text into the P802.16j baseline document.

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

Re:
Call for technical proposals 802.16j-06/034.
Signaling support for two-hop and multihop frame structure

Mike Hart

Fujitsu Laboratories of Europe Ltd.

Introduction

The baseline document [1] includes the definition of a new type of zone, referred to as a “relay zone”, in the downlink and uplink subframe in order to facilitate MR-BS and RS to RS communication. As stated in [1] it is possible to include a multitude of relay zones in both the downlink and uplink subframes.

In order to support definition of these zones, clarification is required to define the messages that signal the existence, location and format of these zones within the subframe.

To this end, this contribution provides a text proposal for the baseline document that introduces two new MAP IEs that can be included into the DL and UL map messages transmitted by an MR-BS or RS on the access DL. These messages borrow much of their content and structure from the DL and UL zone switch IEs [2], however there are some small differences in the requirements between an access zone and relay zone, hence new messages are proposed to support proper definition.

Also proposed in this contribution is the message to be conveyed in the R-FCH [1] transmitted by the MR-BS or RS in the DL relay zone.

Finally, the two new IEs outlined above are also proposed to be supported in the R-MAP messages in order to define the existence, location and format of these zones in the subsequent frame.

Proposed Messages

This contribution proposes two IEs for use in the DL-MAP and UL-MAP to indicate where a relay zone is located in the DL and UL subframes. These IEs can also be used in the R-DL-MAP and R-UL-MAP to indicate the location of the relay zones in the next frame, allowing the higher layers to control the relative amount of resource allocated to the access and relay links. The proposed IEs are shown in detail in the text proposal, in short they borrow much of their content from the zone switch IEs [2] but also indicate whether a relay zone preamble or relay postamble is present (note this will only be indicated in the first zone defined in the downlink, for all other zones this indicator is not supported).

If the RS does not successfully receive the R-DL-MAP and R-UL-MAP information in the relay link in any one frame, and hence looses the definition of the subsequent frame, it can always refer to the MAP in the access link to find the location again, resulting in minimal impact on performance in future frames.

In the R-FCH it is proposed to convey an R-DL-Frame_Prefix message, which is similar to the DL_Frame_Prefix message [2]. It contains the used subchannel bitmap indication for the case the zone was defined by a DL_Relay_Zone_IE with PUSC and ‘use all subchannel indicator’ set to zero. It also defines the modulation and encoding rate and type to be applied to the R-DL-MAP message as well as the R-DL-MAP message length. Unlike the access link where the DL-MAP is transmitted using a known modulation and coding rate, the R-FCH provides the capability to assign the effective modulation and coding rate, as well as coding type, to the R-DL-MAP. In the case the RSs attached to an MR-BS or RS all have good link quality, this enables a significant reduction in the MAP overhead to be achieved. Unlike in the access link and with the DL-MAP message, the MR-BS or RS will already have knowledge of the stations wishing to receive the R-DL-
MAP message, hence it is feasible that the MR-BS or RS would be able to intelligently adjust the FEC encoding type applied to the R-DL-MAP.

Finally, the R-DL-MAP and R-UL-MAP message is proposed to be carried only in the first relay zone on the DL. The MAP IEs within the messages will then define the bursts on all relay zones. This minimizes overhead in the case more than one relay zone is defined at a station in a subframe. Consequently, it is also proposed that the R-FCH only be contained in the first relay zone on the downlink, as this will provide the necessary information to receive the R-DL-MAP information, which then specifies the necessary information to define all bursts in all relay zones.

Conclusion
In conclusion the message required to support the frame structure defined in [1] is described in this contribution. The following text proposal therefore enables flexible definition of a multitude of relay zones.

Proposed text changes

8.4.4.7.2.1 MR-BS frame structure

[Change the third paragraph as indicated:] The first DL Relay Zone in the subframe shall include an R-FCH and an R-MAP. In the DL Relay Zone, the subchannel allocation may be the same as that in the DL Access Zone. The R-FCH may be the same as the FCH in the DL Access Zone. Other attributes of the MR-BS frame and the RS frame such as transition between modulation and coding, presence of multiple zones, may be the same as those described in 8.4.4.2.

[Insert the following text at the end of subclause:] The R-FCH contains the DL Relay Zone Prefix described in Section 8.4.4.7.3, which specifies the burst profile used to encode the R-DL-MAP message and the R-DL-MAP message length that immediately follows the DL Relay Zone Prefix.

The relay zones in the downlink and uplink subframes are defined by the DL Relay Zone IE and UL Relay Zone IE respectively in the DL-MAP and UL-MAP messages. The DL Relay Zone IE and UL Relay Zone IE are used in the R-DL-MAP and R-UL-MAP to define the relay zones in the next frame.

[Insert new subclause 8.4.4.7.3:]

8.4.4.7.3 Downlink relay zone prefix

The DL Relay Zone Prefix is a data structure transmitted in the first relay zone in the downlink subframe and contains information regarding the zone in which it is included and is mapped to the R-FCH.

| DL Relay Zone Prefix() |
| Size | Notes |
| Syntax | |
Used subchannel bitmap
A bitmap indicating which groups of subchannels are used on the zone and on all other relay zones using PUSC in which ‘Use all SC indicator’ is set to ‘0’ in DL Relay Zone IE(). Value of ‘1’ means used by this segment and ‘0’ means not used by this segment.

R-DL-MAP FEC Type
Indicates the burst profile used for the R-DL-MAP (see 11.4.2).

R-DL-Map_Length
Defines the length in slots of the R-DL-MAP message that follows immediately the R-DL_Frame_Prefix.

[Change the items in Table 277a in Section 8.4.5.3.2.1 as indicated:]

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL Relay Zone IE</td>
<td>4</td>
<td>DL Relay Zone IE = 0x09</td>
</tr>
<tr>
<td>Reserved</td>
<td>2</td>
<td>Shall be set to zero</td>
</tr>
</tbody>
</table>

[Insert new subclause 8.4.5.3.28:]

8.4.5.3.28 DL Relay Zone IE

In the DL-MAP on the access link, an MR-BS or RS may transmit DIUC = 15 with the DL Relay Zone IE() to define a relay zone in the DL subframe. In the R-DL-MAP, an MR-BS or RS may transmit DIUC = 15 with the DL Relay Zone IE() to define a relay zone in the next frame.

In the case the IE defines the first relay zone in a DL subframe, it also defines whether a relay zone preamble is present at the start of this zone or whether a relay postamble is present at the end of the DL subframe.

Table 286xx – DL Relay Zone IE

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL Relay Zone IE()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended DIUC</td>
<td>4</td>
<td>DL Relay Zone IE = 0x09</td>
</tr>
<tr>
<td>Length</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
OFDMA symbol offset
- **Length:** 8 bits
- **Description:** Denotes the start of the zone (counting from the frame preamble and starting from 0)

Permutation
- **Length:** 2 bits
- **Values:**
 - 0b00 = PUSC
 - 0b01 = FUSC
 - 0b10 = Optional FUSC
 - 0b11 = AMC 2x3 (2 bins by 3 symbols)

Use all SC indicator
- **Length:** 1 bit
- **Values:**
 - 0 = Do not use all subchannels
 - 1 = Use all subchannels

STC
- **Length:** 2 bits
- **Values:**
 - 0b00 = No STC
 - 0b01 = STC using 2 antennas
 - 0b10 = STC using 3 antennas
 - 0b11 = STC using 4 antennas

Matrix indicator
- **Length:** 2 bits
 - **STC matrix (see 8.4.8.1.4)**
 - if (STC == 0b10 or STC == 0b11)
 - 0b00 = Matrix A
 - 0b01 = Matrix B
 - 0b10 = Matrix C
 - 0b11 = Reserved
 - else if (STC == 0b01)
 - 0b00 = Matrix A
 - 0b01 = Matrix B
 - 0b10-11 = Reserved

DL PermBase
- **Length:** 5 bits

PRBS_ID
- **Length:** 2 bits
- **Values:** 0..2. Refer to 8.4.9.4.1.

Relay amble presence
- **Length:** 2 bits
- **Values:**
 - 0b00 = Not present
 - 0b01 = Relay zone preamble
 - 0b10 = Relay postamble
 - 0b11 = Reserved

Dedicated pilots
- **Length:** 1 bit
- **Values:**
 - 0 = Pilot symbols are broadcast
 - 1 = Pilot symbols are dedicated. An RS should use only pilots specific to its burst for channel estimation.

Reserved
- **Length:** 7 bits

Relay amble presence
If the DL Relay Zone IE does not describe the first relay zone in a subframe then this value shall be set to 0b00. Otherwise it specifies whether a relay amble in the form of either a relay zone preamble or relay postamble is present.

Change the items in Table 290a in Section 8.4.5.4.1 as indicated:

<table>
<thead>
<tr>
<th>0B</th>
<th>UL Relay Zone IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B</td>
<td>...</td>
</tr>
</tbody>
</table>

Insert new subclause 8.4.5.4.29:
8.4.5.4.29 UL_Relay_Zone_IE
In the UL-MAP on the access link, an MR-BS or RS may transmit UIUC = 15 with the UL_Relay_Zone_IE() to define a relay zone in the UL subframe. In the R-UL-MAP, an MR-BS or RS may transmit UIUC = 15 with the UL_Relay_Zone_IE() to define a relay zone in the next frame.

Table 286xx – UL_Relay_Zone_IE

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL_Relay_Zone_IE()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended DIUC</td>
<td>4 bits</td>
<td>UL_Relay_Zone_IE = 0x0B</td>
</tr>
<tr>
<td>Length</td>
<td>4 bits</td>
<td></td>
</tr>
<tr>
<td>OFDMA symbol offset</td>
<td>7 bits</td>
<td></td>
</tr>
<tr>
<td>Permutation</td>
<td>2 bits</td>
<td>0b00 = PUSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b01 = Optional PUSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b10 = AMC 2x3 (2 bins by 3 symbols)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b11 = Reserved</td>
</tr>
<tr>
<td>UL_PermBase</td>
<td>7 bits</td>
<td></td>
</tr>
<tr>
<td>Use all SC indicator</td>
<td>1 bit</td>
<td>0 = Do not use all subchannels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Use all subchannels</td>
</tr>
<tr>
<td>Reserved</td>
<td>7 bits</td>
<td>Shall be set to zero</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References