Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title Fixed and Nomadic Relay Station Preamble Segment Assignment Scheme

Date Submitted 2007-03-05

Source(s) Peter Wang, Adrian Boariu, Shashikant Maheshwari, Yousuf Saifullah, Tony Reid Nokia
6000 Connection Drive, Irving, TX

Eugene Visotsky
Philipppe Sartori
Motorola Labs
1301 E. Algonquin Rd.
Schaumburg, IL 60196

Shyamal Ramachandran
Motorola Inc.
1064 Greenwood Blvd. Suite 400
Lake Mary, FL 32746

IK Fu, Wern-Ho Sheen, Fang-Ching Ren
NCTU/ITRI
1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C

Sungkyung Kim, Chulsik Yoon, BJ Kwak,
Sungzeun Jin
ETRI
161, Gajeong-dong, Yuseong-Gu,
Daejeon, 305-350, Korea

Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shian-Tsong Sheu, Hua-Chiang Yin, Chih-Chiang Hsieh, Yung-Ting Lee, Frank C.D. Tsai, Heng-lang Hsu, Youn-Tai Lee
III (Institute for Information Industry)
8F., No. 218, Sec. 2, Dunhua S. Rd.,
Taipei City, Taiwan, R. O. C

Aik Chindapol
Siemens Corporate Research
755 College Road East, Princeton, NJ, USA

Youngbin Chang

Voice: +1 214-912-4613
Fax: peter.wang@nokia.com

Voice: +1-847-538-9458
eugenev@motorola.com

Voice: +1 - 407-562-4054
Shyamal.Ramachandran@motorola.com

IKFu@etri.org.tw
cyrano@etri.re.kr

Voice: +886-2-2739-9616
loa@iii.org.tw

Voice: +1 609 734 3364
Fax: +1 609 734 6565
aik.chindapol@siemens.com
Samsung Electronics
416, Maetan-3dong, Youngtong-gu,
Suwon-si, Gyeonggi-do, Korea
Voice: +82-31-279-5519
yb.chang@samsung.com

Yong Sun, Dharma Basgeet, Fang Zhong,
Khurram Rizvi, Paul Strauch
Toshiba Research Europe Limited
32 Queen Square, Bristol BS1 4ND, UK
Tel. no. +441179060749
Sun@toshiba-trel.com

Matty Levanda
WiNetworks
32 Maskit St. Hertzlia, Israel
mattyl@winetworks.com

Koon Hoo Teo, Jeffrey Z. Tao, Jinyun Zhang
Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02421 USA
Voice 617-621-(7557,7527)
Fax 617 621 7550
{teo, tao, jzhang}@merl.com

David Comstock, John Lee,
Zheng Shang, Jingning Zhu
Huawei Technologies
No.98, Lane91, Eshan Road, Shanghai,
P.R.C
Voice: +1 858 735 9382
dcomstock@huawei.com

Yanling Lu, Ting Li
Hisilicon Technologies
Harbour Building, No.8, Dongbeiwang West
Road, HaiDian District, Beijing, China
Voice: 86-10-82829010
Fax: 86-10-82829075
uyanling@hisilicon.com

Sean Cai, Qu Hongyun
ZTE USA
Voice: 86-755-26776604
scai@zteusa.com

Daqing Gu, Anxin Li
DoCoMo
7/F, Raycom Infotech Park A,
No.2 Kexueyuan South Rd, Haidian District,
Beijing, 100080 China
Voice: +86-10-8286-1501 ex.309
Gu@docomolabs-beijing.com.cn

kenji saito
KDDI Labs
saito@kddilabs.jp

Hang Zhang, Mo-Han Fong, Wen Tong,
David Steer, Gaminii Senarath, Derek Yu,
Mark Naden, G.Q. Wang
Nortel
3500 Carling Avenue
Ottawa, Ontario K2H 8E9
Voice: +1 613 7631315
WenTong@nortel.com]

Kyu Ha Lee, Young-jae Kim, Changkyoon Kim
Samsung Thales
kyuha.lee@samsung.com
<table>
<thead>
<tr>
<th>Re:</th>
<th>Call for Technical Proposals regarding IEEE Project P802.16j (IEEE 802.16j-07/007r2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>This contribution proposes fixed and nomadic relay-station preamble segment assignment scheme in order to mitigate interference during the initial RS network entry.</td>
</tr>
<tr>
<td>Purpose</td>
<td>Propose the text regarding fixed and nomadic relay-station preamble segment assignment for multihop relay systems</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
<tr>
<td>Patent Policy and Procedures</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site.</td>
</tr>
</tbody>
</table>
Fixed/Nomadic Relay-Station Preamble Segment Assignment Scheme

Peter Wang, Adrian Boariu, Shashikant Maheshwari, Yousuf Saifullah, Tony Reid
Nokia

Eugene Visotsky, Philippe Sartori, Shyamal Ramachandran
Motorola

I-Kang Fu, Wern-Ho Sheen, Fang-Ching Ren
NCTU/ITRI

Sungkyung Kim, Chulsik Yoon, BJ Kwak, Sunggeun Jim
ETRI

Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shiann-Tsong Sheu, Hua-Chiang Yin, Chih-Chiang Hsieh, Yung-Ting Lee, Frank C.D. Tsai, Heng-Iang Hsu, Youn-Tai Lee
Institute for Information Industry

Aik Chindapol
Siemens Corporate Research

Youngbin Chang
Samsung Electronics

Yong Sun, Dharma Basgeet, Fang Zhong, Paul Strauch
Toshiba Research Europe Limited

Matty Levanda
WiNetworks

Koon Hoo Teo, Jeffrey Z. Tao, Jinyun Zhang
Mitsubishi Electric Research Lab

David Comstock, John Lee, Zheng Shang, Jingning Zhu
Huawei Technologies

Yanling Lu, Ting Li
Hisilicon Technologies

Sean Cai, Qu Hongyun
ZTE USA

Daqing Gu, Anxin Li
DoCoMo

kenji saito
KDDI Labs
Hang Zhang, Mo-Han Fong, Wen Tong, David Steer, Gamini Senarath, Derek Yu, Mark Naden, G.Q. Wang

Nortel

Kyu Ha Lee, Young-jae Kim, Changkyoon Kim

Samsung Thales
1. INTRODUCTION
The initial network entry process for MS to BS is defined in IEEE Std. 802.16-2004 & 802.16e-2005, Section 6.3.9. In the frame structure, the first OFDMA symbol of the downlink transmission is preamble. There are three different preamble carrier-sets each using orthogonal subcarrier sets. Each segment uses a preamble that uses one of the three available carrier-sets in the following manner: segment 0 uses preamble carrier-set 0, segment 1 uses preamble carrier-set 1, and segment 2 uses preamble carrier-set 2. In the DL (DownLink) PUSC (Partial Usage of Subchannels) mode, any segment used in the preamble shall be allocated at least one group (default is 12 subchannels in case of OFDM-2048) in the DL First Zone that also contains FCH and DL-MAP. First PUSC Zone which contains at least FCH and DL-MAP can cause interference from the same segment.

In the MR-BS enabled system, a RS can be turned on at anytime/anywhere and with mobility. If the RS overlaps in coverage with its neighboring RSs/BSs and the same segment values are used, then co-channel interference (collision) may occur and MS/SS (mobile station/subscriber station) may not decode the Cell-ID and control message such as FCH and DL-MAP signals. In order to mitigate the interference, we propose RS preamble segment assignment methods during the initial RS network entry.

2. INITIAL RS PREAMBLE SEGMENT CONFIGURATION
In order to perform the initial RS preamble segment configuration, the following two steps should be considered.

2.1 Initial RS Neighbor Detection
This specification defines a relay station function that enables RS neighbor detection at initial network entry. For instance, a RS powered on in a MR-BS coverage area shall perform the initial network entry with MR-BS and try to register with the MR-BS via initial ranging. In the initial phase, the RS acts as a MS/SS, and informs the BS that it has relay capabilities, thus at this point it is only a potential (candidate) RS, not an enabled RS. After the network entry and during cell selection, the potential RS scans its neighbors searching for preambles within all possible segments. The RS can detect the presence of the RSs/BSs in its neighborhood, and can inform the MR-BS about the detection results. The preamble is transmitted using 9dB higher power than the normal data transmissions. The preamble coverage radius is therefore larger than the normal control/data signal coverage radius. The potential RS reports all the detected neighboring preambles to the MR-BS. If the potential RS is able to detect a neighboring preamble signals above a pre-defined threshold value (threshold value is implementation dependent), then the control signal coverage between the potential RS and the neighboring RS/BS may overlap, and these control signals (i.e., FCH and DL-MAP signals) can cause co-channel interfere to the serving MS/SS. In this case it is advisable for the BS to assign a different segment value to the potential RS such that the co-channel interference that a MS receives is minimized. The initial RS preamble segment assignment for the potential RS is discussed subsequently.
2.2 Initial RS Preamble Segment Assignment

MR-BS requests the potential RS to act as a mobile station and to scan its neighboring RS preambles (i.e., scanning the frequency bands for segment 0, 1, and 2). The potential RS reports all of the detectable neighboring preambles and RSS (receiver signal strengths) to the MR-BS. If the potential RS does not detect preambles in all segments (i.e., segments 0, 1 and 2), the MR-BS assigns the potential RS a segment that was not detected. On the other hand, if the potential RS detects preambles in all segments, the MR-BS may have three options. First option (Option=1) would be simply not to enable the potential RS to operate as a relay. The second option (Option=2) would be to allow the potential RS to act as a cooperative-diversity relay in the operating coverage area. The third option (Option=3) would be to allow the RS to operate in the Transparent RS (T-RS) mode, whereby the T-RS relays data and control messages on the uplink, but is not involved in DL transmissions or only relays DL data transmissions and, thereby, does not transmit its own preamble or control information. For the second option, this means that the MR-BS configures the potential RS to be fully managed (i.e., its scheduling is done in a centralized manner by the MR-BS). In this case, the MR-BS and the potential RS may transmit the same data burst simultaneously. For the third option, the centralized scheduler at the MR-BS signals to the T-RS the specific burst allocations or CID assignments to be relayed on uplink or downlink. The message signaling relating to the initial RS segment assignment is shown in Figure 1.
Figure 1. The message signaling for initial RS preamble segment assignment.

Note: RS can obtain its neighbor information during PHY synchronization before initial ranging. Therefore, it can send the report to MR-BS after RNG-REQ, SBC-REQ or REG-REQ.

To be more explicit, two examples are described as following:

In the first example considered, the potential RS reports to the MR-BS that it has detected two BSs or RSs in the area (labeled as RS0 and RS1, respectively), that have the following segments and IDcells: RS0 = \{0, 11\} and RS1 = \{2, 23\}. In this case the MR-BS can enable the potential RS to operate as a relay having assigned the segment 1, which has not been detected as being used in the area of operation.
In the second example, the potential RS detects the presence of the following BSs or RSs: \(\text{RS}_0 = \{0, 11\} \), \(\text{RS}_1 = \{1, 30\} \), and \(\text{RS}_2 = \{2, 23\} \). Let’s assume that the signal strengths from these RSs are relatively strong, above a certain pre-defined threshold value. The MR-BS can conclude that the area where the potential RS is located is well served by other RSs, so it may choose not to enable this potential RS. Now let’s assume that the signal strength reported for the \(\text{RS}_0 \) and \(\text{RS}_1 \) are close to the threshold value mentioned above. The MR-BS chooses to enable the potential RS to operate as being fully managed, and assigns to it \(\text{RS}_p = \{(0, 11), (1, 30)\} \), and at the same time reconfigures the \(\text{RS}_0 \) and \(\text{RS}_1 \) to operate also as fully managed shown in Figure 2. Note that the \(\text{RS}_p \) will be acting as a supportive relay (everything is transparent) for the MSs that are served already by \(\text{RS}_0 \) and \(\text{RS}_1 \); \(\text{RS}_p \) acts like another transmission antenna that can improve the cooperative-diversity gain.

We have considered a RS preamble segment and Cell ID assignment in the initial network entry stage by means of initial RS neighbor detection reports. Note that it is understood that in order to enable an RS, the MR-BS may consider some other issues, such as the traffic load in the area where the RS would operate, interference that it may generate to the neighbor RSs/BSs, etc.

Figure 2. The \(\text{RS}_p \) relay is acting as a cooperative relay for \(\text{RS}_0 \) as well as \(\text{RS}_1 \).
3. CHANGES TO THE SPECIFICATION

Insert the new subclause 6.3.2.3.65

6.3.2.3.65. RS neighbor station measurement report (RS_NBR-MEAS-REP) message

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_NBR-MEAS-REP_Message_Format() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type =TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_Preamble_Index 8 bits</td>
<td>Number of preamble of neighboring RS/BS</td>
<td></td>
</tr>
<tr>
<td>Begin PHY Specific Section {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For (i=0, i< N_Preamble_Index, i++){</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preamble Index 8 bits</td>
<td>Scan the preamble index and RSSI values in the neighboring list</td>
<td></td>
</tr>
<tr>
<td>Report Response TLVs Variable</td>
<td>TLV specific</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV Encoded Information Variable</td>
<td>TLV specific</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Report Response TLV shall include physical CINR or RSSI of the preamble index.

N_Preamble_Index
Number of preamble of neighboring RS/BS.

This message shall include following TLV:

Preamble with the least signal strength

This TLV is used for a RS to report the preamble index with the least signal strength. This information will help a MR-BS to assign a preamble to a RS which would cause the least interference to its neighborhood.

Insert new subclause at the end of 6.3.9

6.3.9. During the registration process, the RS acts as a MS/SS and use RNG-REQ message to inform the MR-BS that it has relay capability to MR-BS.
6.3.9.1. Scanning and synchronization to the downlink
RS follows the scanning and synchronization procedure similar to that of the SS. In addition, however, the RS shall store preamble index and signal strength that are above a certain threshold value in order to report the stored values to the serving MR-BS after registration.

6.3.9.17. Interference report of neighboring stations to MR-BS
After registration with an MR-BS, the RS sends RS_NBR-MEAS-REP messages (see 6.3.2.3.65), containing the signal strength measurement from other stations, to the MR-BS.

Insert new subclause (6.3.2.3.66) [Note that this is only a field in the RS_Config-REQ message to be adopted. Other fields may be provided in other adopted contributions]

6.3.2.3.66 RS preamble configuration request (RS_Config-REQ) message

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
</table>
| N_Preamble | 2 bits | N_Preamble=0 specifies NULL preamble (e.g., Transparent RS)
| | | N_Preamble=1 assigns one preamble to the RS
| | | N_Preamble=2 assigns two preambles on different segments to the RS
| | | N_Preamble=3 assigns three preambles on different segments to the RS |
| Reserved | 6 bits | Reserved |
| For (i=0, i<N_Preamble; i++){
| Preamble index | 8 bits | Assign a preamble index value to the potential RS |
| } | | |
| TLV Encoded Information | Variable | TLV specific |

N-Preamble
N_Preamble is the number of preamble index assigned to the potential RS. For example, N-Preamble=0 means the potential RS does not transmit preamble acting as a Transparent RS. If N-Preamble=1 means the potential RS transmit one preamble index (i.e., the RS transmit one segment value and one IDCell) acting as a Non-Transparent RS. If N-Preamble=2 means the potential RS transmit two preamble index (i.e., the RS transmit two different segment values and IDCells) acting as a Non-Transparent RS.
The RS_Config-REQ shall contain the following TLVs:
HMAC/CMAC Tuple (see 11.1.2)
The HMAC/CMAC Tuple shall be the last attribute in the message.

Insert new subclause (6.3.2.67)

6.3.2.67 RS preamble configuration response (RS_Config-RSP) message

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_Config-RSP_Message_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type = TBD</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>1 bit</td>
<td>0 = Fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Success</td>
</tr>
<tr>
<td>Reserved</td>
<td>7 bits</td>
<td></td>
</tr>
<tr>
<td>TLV Encoded Information</td>
<td>Variable</td>
<td>TLV specific</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result
Result indicates the RS preamble configuration request message; a bit of 0 indicates the message fail and a bit of 1 indicates the message success.

The RS_Config-RSP shall contain the following TLVs:
HMAC/CMAC Tuple (see 11.1.2)
The HMAC/CMAC Tuple shall be the last attribute in the message.

Insert new subclause (6.3.26)

6.3.26 Relay station neighborhood discovery
During the RS neighborhood discovery procedure, the potential RS can obtain its neighbor information during PHY synchronization before initial ranging. Therefore, it can send the report to MR-BS after RNG-REQ, SBC-REQ or REQ-REQ. Then, the RS sends a RS_NBR-MEAS-REP message (6.3.2.65) back to the MR-BS to response the measurement report.

Insert new subclause (9.4)

9.4 RS configuration
After the measurement report from RS neighborhood discovery process, MR-BS may send a RS preamble configuration request (RS_Config-REQ) message (6.3.2.66) to the RS for configuring the preamble segment and IDcell values. The RS sends a RS_CONF-RSP message to the MR-BS for responding the preamble assignment result.

Insert new subclause (11.20)
11.20 Preamble index with least signal strength

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Variable</td>
<td>b0 – b7: num_preambles for (I = 0; I < num_preamble; i++) {} preamble index (8 bits)</td>
<td>RS_NBR_MEAS_REP</td>
</tr>
</tbody>
</table>