<table>
<thead>
<tr>
<th>Title</th>
<th>Mobile Relay Station Preamble Segment Re-Assignment Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Submitted</td>
<td>2006-03-05</td>
</tr>
</tbody>
</table>

Source(s)
- Peter Wang, Adrian Boariu, Shashikant Maheshwari, Yousuf Saifullah, Tony Reid
 Nokia
 6000 Connection Drive, Irving, TX

- Eugene Visotsky
 Philippe Sartori
 Motorola Labs
 1301 E. Algonquin Rd.
 Schaumburg, IL 60196

- Shyamal Ramachandran
 Motorola Inc.
 1064 Greenwood Blvd. Suite 400
 Lake Mary, FL 32746

- I-Kang Fu, Wern-Ho Sheen, Fang-Ching Ren
 NCTU/ITRI
 1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C

- Sungkyung Kim, Sungcheol Chang, Chulsik Yoon
 ETRI
 161, Gajeong-dong, Yuseong-Gu,
 Daejeon, 305-350, Korea

- Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shiann-Tsong Sheu, Hua-Chiang Yin, Chih-Chiang Hsieh, Yung-Ting Lee, Frank C.D. Tsai, Heng-lang Hsu, Youn-Tai Lee
 Institute for Information Industry
 8F., No. 218, Sec. 2, Dunhua S. Rd.,
 Taipei City, Taiwan.

- Aik Chindapol
 Siemens Corporate Research
 755 College Road East, Princeton, NJ, USA

- Yong Sun, Dharma Basgeet, Fang Zhong, Khurram Rizvi, Paul Strauch
 Toshiba Research Europe Limited
 32 Queen Square, Bristol BS1 4ND, UK

- Matty Levanda
 WiNetworks
 32 Maskit St. Hertzlia, Israel

- Koon Hoo Teo, Jeffrey Z. Tao, Jinyun Zhang
 Mitsubishi Electric Research Lab
 201 Broadway

Contact Information
- Voice: +1 214-912-4613
 Fax: peter.wang@nokia.com

- Voice: +1-847-538-9458
 eugenev@motorola.com

- Voice: +1 - 407-562-4054
 Shyamal.Ramachandran@motorola.com

- IKFu@itri.org.tw

- Voice: +886-2-2739-9616
 loa@iii.org.tw

- Mattyl@winetworks.com

- Voice 617-621-(7557,7527)
 Fax 617 621 7550
 {teo, tao, jzhang}@merl.com
Call for Technical Proposals regarding IEEE Project P802.16j (IEEE 802.16j-07/007r2)

Abstract
This contribution proposes mobile relay-station preamble and segment re-assignment scheme that mitigates system interference during mobility MRS handover.

Purpose
Propose the text regarding mobile relay-station preamble segment re-assignment for multi-hop relay systems

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Mobile Relay-Station Preamble Segment Re-Assignment Scheme

Peter Wang, Adrian Boariu, Shashikant Maheshwari, Yousuf Saifullah, Tony Reid
Nokia

Eugene Visotsky, Philippe Sartori, and Shyamal Ramachandran
Motorola Labs

I-Kang Fu, Wern-Ho Sheen, Fang-Ching Ren
NCTU/ITRI

Sungkyung Kim, Sungcheol Chang, Chulsik Yoon
ETRI

Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shiann-Tsong Sheu, Hua-Chiang Yin, Chih-Chiang Hsieh, Yung-Ting Lee, Frank C.D. Tsai, Heng-lang Hsu, Youn-Tai Lee
Institute for Information Industry

Aik Chindapol
Siemens Corporate Research

Yong Sun, Dharma Basgeet, Fang Zhong, Paul Strauch
Toshiba Research Europe Limited

Matty Levanda
WiNetworks

Koon Hoo Teo, Jeffrey Z. Tao, Jinyun Zhang
Mitsubishi Electric Research Lab

David Comstock, John Lee, Zheng Shang, Jingning Zhu
Huawei Technologies

Yanling Lu, Ting Li
Hisilicon Technologies

Sean Cai, Qu Hongyun
ZTE USA

Daqing Gu, Anxin Li
DoCoMo

1. INTRODUCTION

The initial network entry process for MS is defined in IEEE Std. 802.16-2004 & 802.16e-2005, Section 6.3.9. In the DL PUSC mode, any segment used in the preamble shall be allocated at least one group (default is 12 subchannels in case of OFDM-2048) in the DL First Zone that contains FCH and DL-MAP. The default allocated subchannel sets for segments 0, 1, 2 are subchannels 0-11, 20-31, and 40-51, respectively. For example, when segment 0 is detected in the DL preamble of the frame structure, the immediately followed First Zone PUSC (i.e., FCH and DL-MAP) messages shall use at least 12 subchannels 0-11 to encode the FCH and
DL-MAP control signaling. Note that the First Zone PUSC subchannel can cause interference with the same segment value.

In the relay enabled system, a Mobile RS (MRS) can be turned on at anytime and anywhere. If the MRS coverage area overlaps its neighbors RSs/BSs coverage areas and the same segment values are used, then in this situation co-channel interference may arise and MS/SS (mobile station/subscriber station) may not decode Cell IDs and control messages such as FCH and DL-MAP signals. In order to mitigate interference, we propose MRS preamble and segment re-assignment methods used as the MRS moves.

2. MOBILE RS PREAMBLE SEGMENT CONFIGURATION

After the mobile RS has registered with the MR-BS, it may move. In this case, two RSs (nomadic/mobile/fixed RS) or BS may end up geographically close to one another and they may interfere with each other if they have the same segment value. In order to mitigate co-channel interference due to the RS mobility, we propose a preamble segment re-assignment method associated with mobility handover.

2.1 Mobile RS Preamble Segment Re-Assignment

During the initial network entry procedure, the MR-BS has assigned a segment “0”, “1”, or “2” to each RS in its coverage area. MR-BS can simply re-assign a different segment value to mobile RS that is interfering with other fixed/nomadic RSs. If both RSs are mobile RS, than we can re-assign one of them. Before the mobile RS segment reassignment, the BS/RS will command all the MSs within the mobile RS’s serving coverage area to switch to the newly assigned preamble segment at pre-determined action time via MOB_BSHO_REQ and MOB_HO_IND handover procedure as shown in Figure 1. With this virtual handover process, all the MSs do not really handover to a different RS. The targeted RS is the same as the previous serving RS but re-assigned a new RS preamble segment value and all the MSs controlled by this RS switch to this newly re-assigned RS preamble segment value with the same or different IDCell. The message signaling of mobile RS preamble segment re-assignment method is shown in Figure 1. Mobile RS may simultaneously transmit both the old and newly assigned preambles, together with the associated control signaling, for some (configurable) period of time in order to support fast ranging.
Figure 1. The message signaling for the mobile RS preamble segment re-assignment.)
3. CHANGES TO THE SPECIFICATION

Insert the following text at the end of 6.3.2.3.7

For a MR-BS operation, the REG-REQ shall contain the following TLV.

RS_capability_support TLV (11.7.27)

Insert new subclause at the end of 6.3.9

6.3.9. During the network entry and registration process, the MRS acts as a MS/SS and use REG-REQ message to inform the MR-BS that it has relay capability to MR-BS.

*Insert new subclause (6.3.2.3.66)***

Note: The same messages of RS_CONF-REQ and RS_CONF-RSP have been used in the proposal of FRS preamble segment assignment in C802.16j-07/040r5.

6.3.2.3.66 RS preamble configuration request (RS_CONF-REQ) message

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_CONF-REQ_Message_Format() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type = TBD</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>N_Preamble</td>
<td>2 bits</td>
<td>N_Preamble=0 specifies NULL preamble (e.g., Transparent RS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N_Preamble=1 assigns one preamble to the RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N_Preamble=2 assigns two preambles on different segments to the RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N_Preamble=3 assigns three preambles on different segments to the RS</td>
</tr>
<tr>
<td>Reserved</td>
<td>6 bits</td>
<td></td>
</tr>
<tr>
<td>For (i=0, i<N_Preamble; i++) {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preamble index</td>
<td>8 bits</td>
<td>Assign a preamble index value to the potential RS</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td>TLV Encoded Information Variable TLV Specific</td>
</tr>
</tbody>
</table>

N-Preamble

N-Preamble is the number of preamble index assigned to the potential RS. For example, N-Preamble=0 means the potential RS does not transmit preamble acting as a Transparent RS. If N-Preamble=1 means the potential RS transmit one preamble index (i.e., the RS transmit one segment value and one IDCell) acting as a Non-Transparent RS. If N-Preamble=2 means the potential RS transmit two preamble index (i.e., the RS transmit two different segment values and IDCells) acting as a Non-Transparent RS.
The RS_CONF-RSP shall contain the following TLVs:
HMAC/CMAC Tuple (see 11.1.2)
The HMAC/CMAC Tuple shall be the last attribute in the message.

Insert new subclause (6.3.2.3.67)

6.3.2.3.67 RS preamble configuration response (RS_CONF-RSP) message

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_CONF-RSP_Message_Format() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type = TBD</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>1 bit</td>
<td>0 = Fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Success</td>
</tr>
<tr>
<td>Reserved</td>
<td>7 bits</td>
<td></td>
</tr>
<tr>
<td>TLV Encoded Information</td>
<td>Variable</td>
<td>TLV Specific</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result
Result indicates the RS preamble configuration request message; a bit of 0 indicates the message fail and a bit of 1 indicates the message success.

The RS_CONF-RSP shall contain the following TLVs:
HMAC/CMAC Tuple (see 11.1.2)
The HMAC/CMAC Tuple shall be the last attribute in the message.

Insert new subclause (6.3.22.4)

6.3.22.4.1 MRS Handover with preamble index changes
When MRS coverage area overlaps with another infrastructure stations coverage area, MR-BS may initiate MRS preamble reassignment procedures as define in section 9.4. If MRS preamble is changed then all the active MS connections are handed over to the same physical MRS after the RS preamble is changed using procedures in 6.3.22. The MRS segment reassignment procedure is executed during or after handover decision and initiation stage. All the MSs within the MRS’s serving coverage are switched to the newly assigned preamble segment at pre-determined action time via MOB_BSHO_REQ/RSP.

Insert new subclause (9.4)

9.4 RS configuration
After the measurement report from RS neighborhood discovery process, MR-BS may send a RS preamble configuration request (RS_CONF-REQ) message (6.3.2.3.66) to the RS for configuring the preamble segment and IDCell values. MR-BS may assign NULL preamble to the RS, thereby configuring it as a Transparent RS. Also, an RS may be assigned multiple preambles in order to proceed with the MS virtual handover process as defined in section 6.3.22.4.1. The RS sends a RS_CONF-RSP message to the MR-BS for responding the preamble assignment result.
*** The same TLV of RS_capability_support has been used in the proposal of FRS preamble segment assignment.

Insert new subclause 11.7.27

11.7.27 RS_capability_support
The “RS_capability_support” field indicates the potential RS capability. A bit of 1 indicates “support RS capability”.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>1</td>
<td>Bit #0=1; Support FR capabilities.</td>
<td>REG-REQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #1=1; Support MRS capability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit#2- bit #7; Reserved</td>
<td></td>
</tr>
</tbody>
</table>