Title: Sleep Mode Operations in MR Network for Centralized Scheduling Approach

Date Submitted: 2007-01-08

Source(s): Shiao-Li Tsao, Fang-Ching Ren, I-Kang Fu, Wern-Ho Sheen
National Chiao Tung University (NCTU)
/Industrial Technology Research Institute (ITRI),
Taiwan
No. 195, Sec. 4, Chung Hsing Rd., Chutung,
Hsinchu, Taiwan 310, R.O.C.

Yuefeng Zhou; Mike Hart; Sunil Vadgama
Fujitsu Laboratories of Europe Ltd
Hayes Park Central, Hayes End Road, Hayes,
Middlesex, UB4 8FE, UK

Keiichi Nakatsugawa
Fujitsu Laboratories Ltd.
Kamikodanaka 4-1-1,
Kawasaki, 211-8588, Japan

Yousuf Saifullah, Shashikant Maheshwari,
Haihong Zheng
Nokia
6000 Connection Drive, Irving, TX

Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shiaan-Tsong
Sheu, Hua-Chiang Yin, Chih-Chiang Hsieh, Yung-Ting Lee, Frank C.D. Tsai, Heng-lang Hsu, Youn-Tai Lee,
Institute for Information Industry,
8F., No. 218, Sec. 2, Dunhua S. Rd.,
Taipei City, Taiwan.

Re: IEEE 802.16j-06/027: “Call for Technical Proposals regarding IEEE Project P802.16j”

Abstract: This document presents sleep mode and idle mode operations for IEEE 802.16j. The existing IEEE 802.16e messages are reused and new parameters are introduced in order to facilitate the sleep mode and idle mode management in IEEE 802.16j.

Purpose: Propose the sleep mode and idle mode operations for IEEE 802.16j

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole
discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The
contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures
<http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known
use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or
applicant with respect to patents essential for compliance with both mandatory and optional portions of the
standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is
essential to reduce the possibility for delays in the development process and increase the likelihood that the draft
publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as
possible, in written or electronic form, if patented technology (or technology under patent application) might be
incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose
this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Introduction

In WiMAX MR networks, the RS may use two types of scheduling. Centralized Scheduling, where MR-BS controls all the radio resource scheduling and MAP allocation. Distributed Scheduling, where some functionality of radio resource scheduling and MAP allocation are distributed to RS. This contribution proposes text to clarify the MS sleep mode for the centralized scheduling approach only.

I. Centralized Scheduling Approach

The sleep mode is centrally controlled by MR-BS. For example, the MS sleep-mode should be approved by the MR-BS, and MR-BS determines the duration of sleep, listening windows, and other properties of MS sleep mode. The RS simply relays the sleep mode messages, such as MOB_SLP-REQ/RSP, and traffic indication, and it does not maintain any state information of sleep-mode MSs, which means the MS sleep mode does not need any extra functionalities from RS.

While sending MOB_TRF-IND to MSs for indicating incoming packets, MR-BS should take processing and scheduling delays introduced by RSs into the consideration. As shown in Fig. 1, MS enters Sleep mode by sending MOB_SLP-REQ and receiving MOB_SLP-RSP message with “Start Frame Number” parameter from MR-BS. While the MR-BS decides to send MOB_TRF-IND message to the MS which wakes up at frame F_i, the MOB_TRF-IND message should be sent from MR-BS D_i frames before the frame F_i. D_i is the processing and scheduling delay introduced by the i^{th} RS.

Figure 1. MS sleep mode support for centralized scheduling
6.3.21.7 Relay support for MS sleep mode

MS sleep mode should be supported in an MR network for both centralized and decentralized scheduling approaches. In MR networks, the sleep mode shall be centrally controlled by the MR-BS in the presence of centralized or distributed scheduling.

6.3.21.7.1 MS sleep mode support for centralized scheduling approach

MS sleep mode, for the MS attached through an RS, works as in the section 6.3.21. RS only relays the signaling and doesn’t need any additional functionality for supporting sleep mode procedure. All MOB_SLP-REQ messages generated by MSs shall be relayed by RSs to the MR-BS. The MR-BS shall be responsible for generating MOB_SLP-RSP messages, which will be relayed by RSs, either in response to a MOB_SLP-REQ or unsolicited. The MR-BS shall take the additional relay delay into account while it forwards the packets through RS.

References