Proje ct	IEEE 802.16 Broadband Wireless Access Working	Group < <u>http://ieee802.org/16</u> >							
Title	Demodulation and Forwarding method in Relay Sta	ition							
Date Sub mitte d	30-Apr-2007								
Sour ce(s)	Su Chang Chae, Young-il Kim, Hyunjae Kim ETRI	schae@etri.re.kr							
	Kyu Ha Lee, Changyun Kim, Yong Wook Lee	kyuha.lee@samsung.com							
	Samsung Thales								
	Aik Chindapol	Aik.Chindalpol@siemens.com							
	Siemens								
	Adrian Boariu	Adrian.Boariu@nokia.com							
	<u>Nokia</u>								
Re:	Call for Technical Proposals regarding IEEE project P802.16j								
Abstr act	Propose demodulation and forwarding method within a single frame in RS and change the technical tables.								
Purp ose	Adoption of the proposed text and tables								
Notic e	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.								
Rele ase	The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.								
Pate nt Polic y and	The contributor is familiar with the IEEE 802.16 Patent Policy and < <u>http://ieee802.org/16/ipr/patents/policy.html</u> >, including the state known use of patent(s), including patent applications, if there is te standards-developing committee and provided the IEEE receives will license applicants under reasonable terms and conditions for standard."	ment "IEEE standards may include the chnical justification in the opinion of the assurance from the patent holder that it							
Proc edur es	Early disclosure to the Working Group of patent information is essential to reduce the possibility for delays in the development that the draft publication will be approved for publication. Please r < <u>mailto:r.b.marks@ieee.org</u> > as early as possible, in written or ele under application) that may cover technology that is under consid	t process and increase the likelihood notify the Chair ectronic form, of any patents (granted or							

IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <<u>http://ieee802.org/16/ipr/patents/notices</u>>.

Demodulation and Forwarding Method in Relay Station

Su Chang Chae, Young-il Kim, Hyunjae Kim, Kyu Ha Lee*, Changyun Kim*, Yong Wook Lee*, Aik Chindapol**, <u>Adrian Boariu***</u>

ETRI, Samsung Thales*, Siemens**, Nokia***

1. Introduction

We propose the demodulation and forwarding method in RS. The demodulation and forwarding method means that RS performs only demodulation without channel decoding for received signals and then modulation only without channel encoding procedure while forwarding the data in modem of RS.

We are expected to use this demodulation and forwarding method assuming simple RS optionally. If we may use this forwarding method, we can also change modulation order of forwarded data by RS. This forwarding method can change only modulation order without changing of channel coding rates. Therefore, all of the modulation types of BS-to-RS should include a variety of channel coding rates of RS-to-MS.

Finally, we would like to change the technical tables of UCD and DCD burst profile encoding tables and CTC channel coding per modulation tables.

2. Suggested Remedy

2.1 Demodulation and Forward

There have two methods to forward data in RS, which are decoding and forwarding method and demodulation and forwarding method. We may apply decoding and forwarding method to the full functional RS in the figure1, demodulation and forwarding method to simple RS in the figure2. And also, we may apply decoding and forwarding method to channel status such as coverage extension and demodulation and forwarding method to channel status such as coverage hole in the figure3.

We would like to consider only demodulation and forwarding method in RS. Demodulation and forwarding method have main procedural blocks of FFT, QAM de-mapping, QAM mapping and IFFT without channel decoding and encoding procedures. But, we can change the modulation order in QAM mapping block prior to regeneration to forward data. For example, received data of having a 16QAM and 1/2 code rate can be changed to QPSK, 1/2 without changing code rate of 1/2.

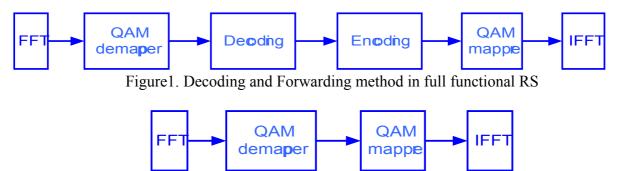


Figure2.Demodulation and Forwarding method in simple RS

2.2 Usage Scenario

Figure3 shows you usage scenario considering MS's position.

There are three kinds of MS which are in the good channel, coverage hole and coverage extension area. MS in the good channel can be directly communicated with MMR-BS. MS in the coverage hole can be applied to demodulation and forwarding method in RS. And coverage extension can be applied to decoding and forwarding method in RS.

For example, in the case of using the demodulation and forwarding in RS for downlink, you can see that dark blue colored line indicates a BS-to-RS link and light blue colored line indicates a RS-to-MS link. It has not change code rate and encoding packet size, but modulation order of 64 QAM has changed by QPSK which can be forwarded to MS. Then, all of the MS should have channel decoding procedure.

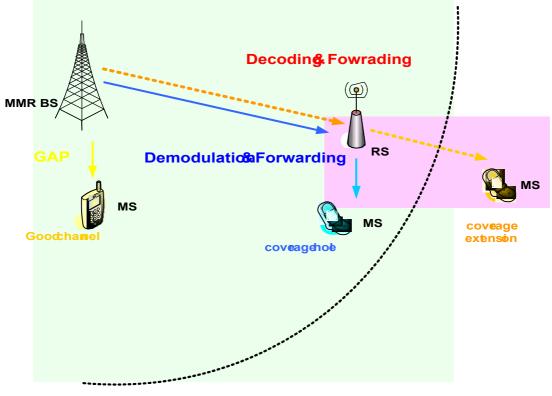


Figure 3. Usage Scenario for Demodulation and Forwarding Method

2.3 Operation Scenario

The figure4 depicts that burst#1 at the BS-to-RS region can be forwarded to burst#2 at the RS-to-MS region and burst#3 at the BS-to-RS region can be forwarded to burst#4 at the RS-to-MS region.

If burst#2's MCS should have QPSK, 1/2 code rate, burst#1's MCS may have 16QAM or 64QAM without changing of code rates. And also, if legacy MS should have MCS of 64QAM, 5/6 code rate at the RS-to-MS, burst#3's MCS may have 16QAM, 5/6. However, the legacy specifications of MS have not defined 5/6 code rate for 16QAM modulation type.

Finally, we may define all of the modulation types and channel coding rate for BS-to-RS to include a variety of modulation type and channel coding rates specifying for the legacy MS.

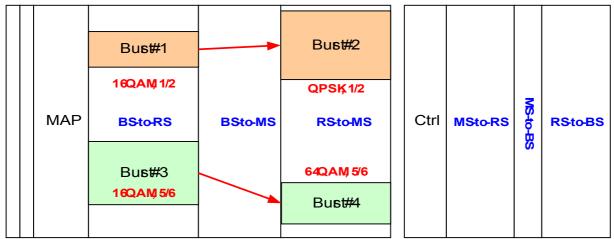


Figure4. Burst allocation for Demodulation and Forwarding

3. Proposed Text Change

[Insert the following this entry at TLV Encoding wirelessMAN-OFDMA]

11.3.1.1 Uplink burst profile encodings

[Change Table 357 in 11.3.1.1 "Uplink burst profile encodings", as shown:]

This following Table 357 should be applied to the MR BS and RS for <u>relay</u> uplinks as a FEC code type and modulation type and its values.

Table 357-UCD burst profile encodings - WirelessMAN-OFDMA

Name	Туре	Length	Value
FEC Code Type and	150	1	0=QPSK(CC) 1/2
modulation type			1=QPSK(CC)3/4
			2=16-QAM(CC)1/2
			3=16-QAM(CC)3/4
			4=64-QAM(CC)1/2
			5=64-QAM(CC)2/3
			6=64-QAM(CC)3/4
			7=QPSK(BTC)1/2
			8=QPSK(BTC)3/4
			9=16-QAM(BTC)3/5
			10=16-QAM(BTC)4/5
			11=64-QAM(BTC)5/8
			12=64-QAM(BTC)4/5
			13=QPSK(CTC)1/2
			14=QPSK(CTC)3/4
			15=16-QAM(CTC)1/2
			16=16-QAM(CTC)3/4
			17=64-QAM(CTC)1/2

Length	Value
	18=64-QAM(CTC)2/3
	19=64-QAM(CTC)3/4
	20=64-QAM(CTC)5/6
	21=QPSK(ZT CC) 1/2
	22=QPSK(ZT CC)3/4
	23=16-QAM(ZT CC)1/2
	24=16-QAM(CC)3/4
	25=64-QAM(ZT CC)1/2
	26=64-QAM(ZT CC)2/3
	27=64-QAM(ZT CC)3/4
	28=QPSK(LDPC)1/2
	29 = QPSK(LDPC)2/3 A code
	30=QPSK(LDPC)3/4 A code
	31=16-QAM(LDPC)1/2
	32=16-QAM(LDPC)2/3 A code
	33=16-QAM((LDPC)3/4 A code
	34=64-QAM(LDPC)1/2
	35=64-QAM(LDPC)2/3 A code
	36=64QAM(LDPC)3/4 A code
	37=QPSK(LDPC)2/3 B code
	38 = QPSK(LDPC)3/4 B code
	39=16-QAM((LDPC)2/3 B code
	40=16-QAM((LDPC)3/4 B code
	41=64-QAM(LDPC)2/3 B code
	42=64QAM(LDPC)3/4 B code
	43=QPSK(LDPC)5/6
	44=16-QAM(LDPC)5/6
	45=64-QAM(LDPC)5/6
	<u>46=QPSK(CTC)2/3</u>
	<u>47=QPSK(CTC)5/6</u>
	<u>48=16-QAM(CTC)2/3</u>
	<u>49=16-QAM(CTC)5/6</u>
	50255=Reserved

UCD burst profile values 46 - 49 shall not be applied to MS. [Insert the following this entry at TLV Encoding wirelessMAN-OFDMA]

11.4.2 Downlink burst profile encodings

[Change Table 363 in 11.4.2 "Downlink burst profile encodings", as shown:]

This following Table 363 should be applied to the MR BS and RS for <u>relay</u> downlinks as a FEC code type and modulation type and its values.

Name	Туре	Length	Value
FEC Code Type and	150	1	0=QPSK(CC) 1/2
modulation type			1=QPSK(CC)3/4
			2=16-QAM(CC)1/2
			3=16-QAM(CC)3/4
			4=64-QAM(CC)1/2
			5=64-QAM(CC)2/3
			6=64-QAM(CC)3/4
			7=QPSK(BTC)1/2
			8=QPSK(BTC)3/4
			9=16-QAM(BTC)3/5
			10=16-QAM(BTC)4/5
			11=64-QAM(BTC)5/8
			12=64-QAM(BTC)4/5
			13=QPSK(CTC)1/2
			14=QPSK(CTC)3/4
			15=16-QAM(CTC)1/2
			16=16-QAM(CTC)3/4
			17=64-QAM(CTC)1/2
			18=64-QAM(CTC)2/3
			19=64-QAM(CTC)3/4
			20=64-QAM(CTC)5/6
			21=QPSK(ZT CC) 1/2
			22=QPSK(ZT CC)3/4
			23=16-QAM(ZT CC)1/2
			24=16-QAM(CC)3/4
			25=64-QAM(ZT CC)1/2
			26=64-QAM(ZT CC)2/3
			27=64-QAM(ZT CC)3/4
			28=QPSK(LDPC)1/2
			29= QPSK(LDPC)2/3 A code
			30=QPSK(LDPC)3/4 A code
			31=16-QAM(LDPC)1/2
			32=16-QAM(LDPC)2/3 A code
			33=16-QAM((LDPC)3/4 A code
			34=64-QAM(LDPC)1/2
			35=64-QAM(LDPC)2/3 A code

Name	Туре	Length	Value
	ĭ.	¥	36=64QAM(LDPC)3/4 A code
			37=QPSK(LDPC)2/3 B code
			38= QPSK(LDPC)3/4 B code
			39=16-QAM((LDPC)2/3 B code
			40=16-QAM((LDPC)3/4 B code
			41=64-QAM(LDPC)2/3 B code
			42=64QAM(LDPC)3/4 B code
			43=QPSK(LDPC)5/6
			44=16-QAM(LDPC)5/6
			45=64-QAM(LDPC)5/6
			<u>46=QPSK(CTC)2/3</u>
			47=QPSK(CTC)5/6
			<u>48=16-QAM(CTC)2/3</u>
			<u>49=16-QAM(CTC)5/6</u>
			50255=Reserved

DCD burst profile values 46 - 49 shall not be applied to MS. [Insert the following this entry at PHY wirelessMAN-OFDMA]

8.4.9.2.3.1 CTC encoder

[Insert Table 326a in 8.4.9.2.3.1 "CTC encoder", as shown:]

This following Table 326a should be applied to the MR BS and RS the CTC encoder as a modulation orders, data block size, code rate and its parameters of the MR BS and RS for relay links. Table 326a shall not be used with MS's communication.

Modulation	Data block size (bytes)	Encoded data block size (bytes)	Code rate	Ν	PO	P1	P2	Р3
QPSK	6	12	1/2	24	5	0	0	0
QPSK	12	24	1/2	48	13	24	0	24
QPSK	18	36	1/2	72	11	6	0	6
QPSK	24	48	1/2	96	7	48	24	72
QPSK	30	60	1/2	120	13	60	0	60
QPSK	36	72	1/2	144	17	74	72	2
QPSK	48	96	1/2	192	11	96	48	144
QPSK	54	108	1/2	216	13	108	0	108
<u>QPSK</u>	<u>24</u>	<u>36</u>	<u>2/3</u>	<u>96</u>	<u>7</u>	<u>48</u>	<u>24</u>	<u>72</u>
<u>QPSK</u>	<u>48</u>	<u>72</u>	<u>2/3</u>	<u>192</u>	<u>11</u>	<u>96</u>	<u>48</u>	<u>144</u>
<u>QPSK</u>	<u>30</u>	<u>36</u>	<u>5/6</u>	<u>120</u>	<u>13</u>	<u>60</u>	<u>0</u>	<u>60</u>
<u>QPSK</u>	<u>60</u>	<u>72</u>	<u>5/6</u>	<u>240</u>	<u>13</u>	<u>120</u>	<u>60</u>	<u>180</u>

Table 326a CTC Channel coding per modulation

16QAM	€	<u>+2</u>	1/2	24	5	€	₽	₽
<u>16-QAM</u>	<u>12</u>	<u>24</u>	<u>1/2</u>	<u>48</u>	<u>13</u>	<u>24</u>	<u>0</u>	<u>24</u>
<u>16-QAM</u>	<u>18</u>	<u>36</u>	<u>1/2</u>	<u>72</u>	<u>11</u>	<u>6</u>	<u>0</u>	<u>6</u>
QPSK	60	120	1/2	240	13	120	60	180
<u>16-QAM</u>	<u>30</u>	<u>60</u>	<u>1/2</u>	<u>120</u>	<u>13</u>	<u>60</u>	<u>0</u>	<u>60</u>
QPSK	9	12	3/4	36	11	18	0	18
QPSK	18	24	3/4	72	11	6	0	6
<u>16-QAM</u>	<u>54</u>	<u>108</u>	<u>1/2</u>	<u>216</u>	<u>13</u>	<u>108</u>	<u>0</u>	<u>108</u>
QPSK	27	36	3/4	108	11	54	56	2
<u> 16 QAM</u>	9	₩	3/4	36	±	18	Ð	18
QPSK	36	48	3/4	144	17	74	72	2
<u>16-QAM</u>	<u>27</u>	<u>36</u>	<u>3/4</u>	<u>108</u>	<u>11</u>	<u>54</u>	<u>56</u>	2
QPSK	45	60	3/4	180	11	90	0	90
<u>16-QAM</u>	<u>45</u>	<u>60</u>	<u>3/4</u>	<u>180</u>	<u>11</u>	<u>90</u>	<u>0</u>	<u>90</u>
QPSK	54	72	3/4	216	13	108	0	108
<u>16-QAM</u>	<u>24</u>	<u>36</u>	<u>2/3</u>	<u>96</u>	<u>7</u>	<u>48</u>	<u>24</u>	<u>72</u>
<u>16-QAM</u>	<u>48</u>	<u>72</u>	<u>2/3</u>	<u>192</u>	<u>11</u>	<u>96</u>	<u>48</u>	<u>144</u>
<u>16-QAM</u>	<u>30</u>	<u>36</u>	<u>5/6</u>	<u>120</u>	<u>13</u>	<u>60</u>	<u>0</u>	<u>60</u>
<u>16-QAM</u>	<u>60</u>	<u>72</u>	<u>5/6</u>	<u>240</u>	<u>13</u>	<u>120</u>	<u>60</u>	<u>180</u>
<u>64-QAM</u>	€	<u>₩</u>	1/2	24	<u>5</u>	Ð	₽	€
<u>64-QAM</u>	<u>12</u>	<u>24</u>	<u>1/2</u>	<u>48</u>	<u>13</u>	<u>24</u>	<u>0</u>	<u>24</u>
QAM16	12	24	1/2	48	13	24	0	24
<u>64-QAM</u>	<u>24</u>	<u>48</u>	<u>1/2</u>	<u>96</u>	7	<u>48</u>	<u>24</u>	<u>72</u>
<u>64-QAM</u>	<u>30</u>	<u>60</u>	<u>1/2</u>	<u>120</u>	<u>13</u>	<u>60</u>	<u>0</u>	<u>60</u>
<u>64-QAM</u>	<u>36</u>	<u>72</u>	<u>1/2</u>	<u>144</u>	<u>17</u>	<u>74</u>	<u>72</u>	<u>2</u>
<u>64-QAM</u>	<u>48</u>	<u>96</u>	<u>1/2</u>	<u>192</u>	11	<u>96</u>	<u>48</u>	<u>144</u>
<u>64-QAM</u>	<u>54</u>	<u>108</u>	<u>1/2</u>	<u>216</u>	<u>13</u>	<u>108</u>	<u>0</u>	<u>108</u>
<u>64-QAM</u>	<u>60</u>	<u>120</u>	<u>1/2</u>	<u>240</u>	<u>13</u>	<u>120</u>	<u>60</u>	<u>180</u>
64-QAM	9	₩	<u>3/4</u>	36	±	18	Ð	18
64-QAM	18	24	<u>3/4</u>	72	±	6	Ð	<u>6</u>
<u>64-QAM</u>	<u>27</u>	<u>36</u>	<u>3/4</u>	<u>108</u>	11	<u>54</u>	<u>56</u>	<u>2</u>
<u>64-QAM</u>	<u>36</u>	<u>48</u>	<u>3/4</u>	<u>144</u>	<u>17</u>	<u>74</u>	<u>72</u>	<u>2</u>
QAM16	24	48	1/2	96	7	48	24	72
QAM16	36	72	1/2	144	17	74	72	2
QAM16	48	96	1/2	192	11	96	48	144
QAM16	60	120	1/2	240	13	120	60	180
QAM16	18	24	3/4	72	11	6	0	6
QAM16	36	48	3/4	144	17	74	72	2
QAM16	54	72	3/4	216	13	108	0	108

QAM64	18	36	1/2	72	11	6	0	6
QAM64	36	72	1/2	144	17	74	72	2
QAM64	54	108	1/2	216	13	108	0	108
QAM64	24	36	2/3	96	7	48	24	72
QAM64	48	72	2/3	192	11	96	48	144
QAM64	27	36	3/4	108	11	54	56	2
QAM64	54	72	3/4	216	13	108	0	108
QAM64	30	36	5/6	120	13	60	0	60
QAM64	60	72	5/6	240	13	120	60	180

References

 $C802.16j\mbox{-}07_251r1\mbox{-}1r1\mbox{-}$ "Demodulation and Forwarding method in Relay Station"