Project	IEEE 802.16 Broadband Wireless Acces	s Working Group <http: 16="" ieee802.org=""></http:>		
Title	MS Periodic Ranging with Non-transpar	ent RS		
Date	2007-01-18			
Submitted				
Source(s)	Kanchei (Ken) Loa, Yi-Hsueh Tsai, Chih-Chiang Hsieh, Yung-Ting Lee, Hua-Chiang Yin, Shiann-Tsong Sheu, Frank C.D. Tsai, Youn-Tai Lee, Heng-Iang Hsu Institute for Information Industry 8F., No. 218, Sec. 2, Dunhua S. Rd., Taipei City, Taiwan.	Voice: +886-2-2739-9616 loa@iii.org.tw		
	Hang Zhang, Peiying Zhu, Mo-Han Fong, Wen Tong, David Steer, Gamini Senarath, Derek Yu, Mark Naden, G.Q. Wang	Voice: +1 613 7631315 WenTong@nortel.com pyzhu@nortel.com		
	Nortel 3500 Carling Avenue Ottawa, Ontario K2H 8E9			
	Yu Ge, Peng-Yong Kong, Chen-Khong Tham	Voice: +65-6874.1950		
	Institute for Infocomm Research	Fax: +65-6775.5014		
	21 Heng Mui Keng Terrace Singapore 119613	geyu@i2r.a-star.edu.sg		
	[add co-authors here]			
Re:	IEEE 802.16j-06/034: "Call for Technic	eal Proposals regarding IEEE Project P802.16j"		
Abstract	This contribution proposes procedures for	or MS periodic ranging with non-transparent RS		
Purpose	Text proposal for 802.16j Baseline Docu	ment		
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.			
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to			

reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures Patent http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may Policy and include the known use of patent(s), including patent applications, provided the IEEE receives **Procedures** assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices>.

1

MS Periodic Ranging with Non-transparent RS

Introduction

This contribution describes MS periodic ranging with non-transparent RS under centralized scheduling scheme. In order to facilitate the incorporation of this proposal into IEEE 802.16j standard, specific changes to the baseline working document IEEE 802.16j-06/026r1 are listed below.

Text Proposal

6.3.10 Ranging

6.3.10.3 OFDMA based ranging

6.3.10.3.4 Relaying support for OFDMA based ranging

6.3.10.3.4.4 MS periodic ranging and automatic adjustments with non-transparent RS

The periodic ranging process shall begin by sending a periodic-ranging CDMA ranging code on the UL allocation dedicated for that purpose.

When RS receives the CDMA ranging code, it shall send RNG_RSP message to MS on the access link. The bandwidth allocated for the RS to send the RNG-RSP message could be centralized scheduling or de-centralized scheduling. The relaying support for scheduling is defined in 6.3.6.7.

The message sequence charts (Table xxx and Table yyy) and flow charts (Figure xxx and Figure yyy) define the ranging and adjustment process that shall be followed by compliant RSs and MR-BSs.

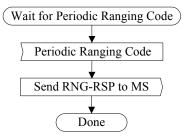
Table xxx – RLY-BST message format

Syntax	Size	Notes
<pre>RLY-BST_Message_Format(){</pre>		
$\underline{\text{Management Message Type} = xx}$	8 bits	
Encoded Information	<u>variable</u>	<u>TBD</u>
1		

Insert the following rows into Table 364 at 11.5 RNG-REQ TLV:

Table 364—RNG-REQ message encodings

	<u>Type</u>	Length	<u>Value</u>	<u>PHY</u>
	<u>(1 byte)</u>		(Variable-length)	<u>Scope</u>
Received Ranging	<u>TBA</u>	<u>Variable</u>	Received Ranging Code Attributes is a	<u>OFDMA</u>
Codes			compound TLV value that indicates	
			received code information.	
Timing Adjust	<u>TBA.1</u>	<u>4</u>	Tx timing offset adjustment (signed	<u>OFDMA</u>
			32-bit). The amount of time required	
			to adjust MS transmission so the	
			bursts will arrive at the expected time	
			instance at the RS. Units are PHY	
			specific (see 10.3). The MS shall	
			advance its burst transmission time if	
			the value is negative and delay its	
			burst transmission if the value is	
			positive.	
Power Level Adjust	TBA.2	<u>1</u>	Tx Power offset adjustment (signed	<u>OFDMA</u>
			8-bit, 0.25 dB units) Specifies the	
			relative change in transmission power	
			level that the MS is to make in order	
			that transmissions arrive at the RS at	
			the desired power. When	
			subchannelization is employed, the	
			subscriber shall interpret the power	
			offset adjustment as a required change	
			to the transmitted power density.	
Offset Frequency	<u>TBA.3</u>	<u>4</u>	Tx frequency offset adjustment	<u>OFDMA</u>
<u>Adjust</u>			(signed 32-bit, Hz units)	
			Specifies the relative change in	
			transmission frequency that the MS is	
			to make in order to better match the	
			RS. (This is fine-frequency adjustment	
			within a channel, not reassignment to	
			a different channel.). The MS shall	
			increase its transmit frequency if the	
			value is positive and decrease its	
			transmit frequency if the value is	
			negative.	


Ranging Status	<u>TBA.4</u>	1	Used to indicate whether uplink	<u>OFDMA</u>
			messages are received within	
			acceptable limits by RS.	
			1 = continue, 2 = abort, 3 = success	
Received Ranging	TBA.5	Variable	Bits 31:22 – Used to indicate the	<u>OFDMA</u>
Code Attributes			OFDM time symbol reference that	
			was used to transmit the ranging code.	
			Bits 21:16 – Used to indicate the	
			OFDMA subchannel reference that	
			was used to transmit the ranging code.	
			Bits 15:8 – Used to indicate the	
			ranging code index that was sent by	
			the MS.	
			Bits 7:0 – The 8 least significant bits	
			of the frame number of the OFDMA	
			frame where the MS sent the ranging	
			code.	
MS CINR mean	<u>TBA.6</u>	1	The MS CINR mean parameter	<u>OFDMA</u>
			indicates the CINR measured by the	
			RS from the MS. The value shall be	
			interpreted as a signed byte with units	
			of (TBD) dB. The measurement shall	
			be performed on the CDMA ranging	
			signal sent by the MS and averaged	
			over the measurement period.	
MS RSSI mean	<u>TBA.7</u>	1	The MS RSSI mean parameter	<u>OFDMA</u>
			indicates the Received Signal Strength	
			measured by the RS from the MS. The	
			value shall be interpreted as an	
			unsigned byte with units of (TBD) dB,	
			such that 0x00 is interpreted as (TBD)	
			dBm, an RS shall be able to report	
			values in the range (TBD) dBm to	
			(TBD) dBm. The measurement shall	
			be performed on the CDMA ranging	
			signal sent by the MS and averaged	
			over the measurement period	

MR-BS MS/SS RS Send RLY-BST which includes MAP containing Ranging Region information RLY-BST [Receive RLY-BST] [time to send next map] Derive map from received RLY-BST Send map containing Ranging Region information Transmit randomly selected Ranging code in a randomly selected Ranging Slot from available Ranging Region [Receive Ranging Code] CDMA Ranging Code Send RNG-RSP with Time and Power Corrections and original Ranging Code and Ranging Slot Status = Continue RNG-RSP (IR CID, continue, ranging code attribute) Receive RNG-RSP message with Ranging Code and Ranging Slot matching sent values Send RLY-BST which includes Adjust Time and Power parameters MAP containing Ranging Region Status = Continue information RLY-BST-[Receive RLY-BST] [time to send next map] Derive map from received RLY-BST Send map containing Ranging Region information UL-MAP Transmit randomly selected Ranging code in a randomly selected Ranging Slot from available Ranging Region [Receive Ranging Code] CDMA Ranging Code Send RNG-RSP with Time and Power Corrections and original Ranging Code and Ranging Slot Status = Success RNG-RSP (IR CID, success, ranging code attribute) Receive RNG-RSP message with Ranging Code and Ranging Slot matching sent values

Adjust Time and Power parameters

Status = Success

Table yyy: Ranging and automatic adjustment procedure in non-transparent RS systems

<u>Figure xxx MS CDMA-based Periodic Ranging – Non-transparent Access RS</u>