Project	IEEE 802.16 Broadband Wireless Access Working Group <http: 16="" ieee802.org=""></http:>					
Title	Unsolicited RNG-RSP with Transparent RS					
Date	2007-01-18					
Submitted						
Source(s)	Kanchei (Ken) Loa, Yi-Hsueh Tsai, Chih-Chiang Hsieh, Yung-Ting Lee, Hua-Chiang Yin, Shiann-Tsong Sheu, Frank C.D. Tsai, Youn-Tai Lee, Heng-Iang Hsu Institute for Information Industry 8F., No. 218, Sec. 2, Dunhua S. Rd., Taipei City, Taiwan.	Voice: +886-2-2739-9616 loa@iii.org.tw				
	Hang Zhang, Peiying Zhu, Mo-Han Fong, Wen Tong, David Steer, Gamini Senarath, Derek Yu, Mark Naden, G.Q. Wang Nortel 3500 Carling Avenue Ottawa, Ontario K2H 8E9	Voice: +1 613 7631315 WenTong@nortel.com pyzhu@nortel.com				
	Yu Ge, Peng-Yong Kong, Chen-Khong Tham Institute for Infocomm Research 21 Heng Mui Keng Terrace Singapore 119613	Voice: +65-6874.1950 Fax: +65-6775.5014 geyu@i2r.a-star.edu.sg				
D	[add co-authors here]IEEE 802.16j-06/034: "Call for Technical Proposals regarding IEEE Project P802.16j"					
Re:						
Abstract	This contribution proposes procedures for unsolicited RNG-RSP with transparent RS					
Purpose	Text proposal for 802.16j Baseline Docum					
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.					
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to					

	reproduce in whole or in part the resulting IEEE Standards publication. The contributor also				
	acknowledges and accepts that this contribution may be made public by IEEE 802.16.				
Patent	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures				
Policy and	http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may				
Procedures	include the known use of patent(s), including patent applications, provided the IEEE receives				
	assurance from the patent holder or applicant with respect to patents essential for compliance				
	with both mandatory and optional portions of the standard." Early disclosure to the Working				
	Group of patent information that might be relevant to the standard is essential to reduce the				
	possibility for delays in the development process and increase the likelihood that the draft				
	publication will be approved for publication. Please notify the Chair				
	<mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented</mailto:chair@wirelessman.org>				
	technology (or technology under patent application) might be incorporated into a draft standard				
	being developed within the IEEE 802.16 Working Group. The Chair will disclose this				
	notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices >.				

Unsolicited RNG-RSP with Transparent RS

Introduction

This contribution describes MS unsolicited RNG-RSP with transparent RS under centralized scheduling scheme. In order to facilitate the incorporation of this proposal into IEEE 802.16j standard, specific changes to the baseline working document IEEE 802.16j-06/026r1 are listed below.

Text Proposal

6.3.10 Ranging

6.3.10.3 OFDMA based ranging

6.3.10.3.4 Relaying support for OFDMA based ranging

6.3.10.3.4.5 Unsolicited RNG-RSP with Transparent RS

After RS received a bandwidth request CDMA ranging code, it should transmit an RNG-REQ message with the RS basic CID containing the CDMA ranging code to the serving MR-BS through the relay path with adjustment information of frequency, power, and timing corrections. When RS receives multiple codes in the ranging subchannel of a frame, the RNG-REQ message sent by the RS to serving MR-BS may contain information of multiple received codes.

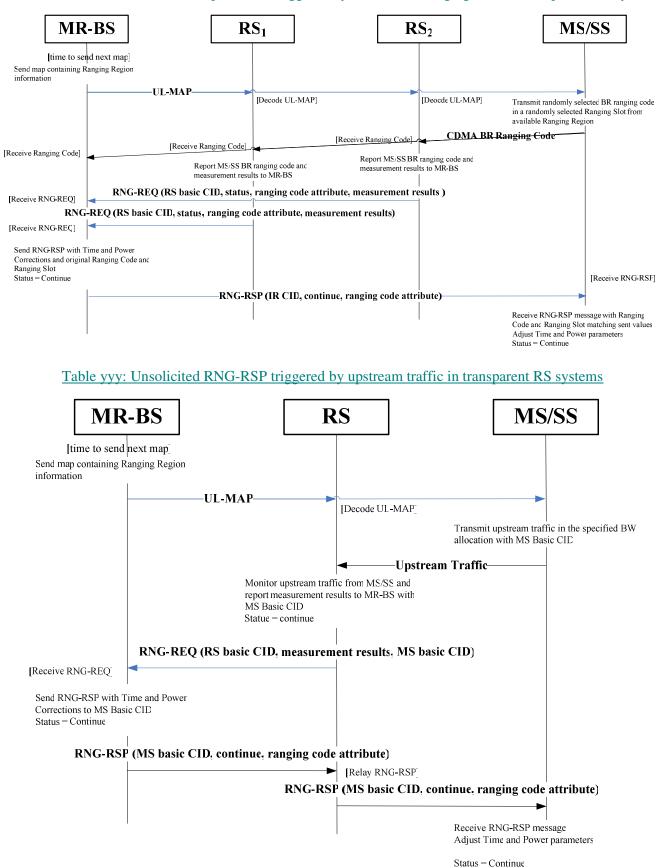
<u>When the MR-BS receives bandwidth request CDMA ranging code, it shall wait for RNG-REQ message</u> containing the same code attribute from its subordinate RSs for T48 timer. Once T48 timer expired, the MR-BS could compare the measured signal information at each access station to decide the adjustment information of the code. Algorithms to decide adjustment information are out of scope of this specification. When it needs to do adjustment for the code, the MR-BS shall broadcast an RNG-RSP with associated code attribute.

<u>When the offsets of frequency, power, and timing for any other data transmission from the MS are beyond the</u> tolerance defined in this specification, RSs shall transmit a RNG-REQ message with the RS basic CID containing the MS basic CID to the serving MR-BS through the relay path.

<u>Upon receiving the RNG-REQ message from a subordinate RS, the MR-BS may send an unsolicited</u> <u>RNG-RSP message with this MS basic CID to the MS.</u>

The message sequence charts (Table xxx and Table yyy) and flow charts (Figure xxx and Figure yyy) define the unsolicited RNG-RSP process that shall be followed by compliant RSs and MR-BSs.

Insert the following rows into Table 364 at 11.5 RNG-REQ TLV:


Table 364-	-RNG-REO	message	encodings
1 4010 501		message	encoungs

	<u>Type</u>	Length	Value	<u>PHY</u>
	<u>(1 byte)</u>		(Variable-length)	<u>Scope</u>
Received Ranging	<u>TBA</u>	<u>Variable</u>	Received Ranging Code Attributes is a	<u>OFDMA</u>

Codes			compound TLV value that indicates	
			received code information.	
Timing Adjust	TBA.1	4	Tx timing offset adjustment (signed	OFDMA
<u>Thing Aujust</u>	<u>110/1.1</u>	<u> </u>	32-bit). The amount of time required	
			to adjust MS transmission so the	
			bursts will arrive at the expected time	
			instance at the RS. Units are PHY	
			specific (see 10.3). The MS shall	
			advance its burst transmission time if	
			the value is negative and delay its	
			burst transmission if the value is	
			positive.	
Power Level Adjust	<u>TBA.2</u>	<u>1</u>	Tx Power offset adjustment (signed	<u>OFDMA</u>
			8-bit, 0.25 dB units) Specifies the	
			relative change in transmission power	
			level that the MS is to make in order	
			that transmissions arrive at the RS at	
			the desired power. When	
			subchannelization is employed, the	
			subscriber shall interpret the power	
			offset adjustment as a required change	
			to the transmitted power density.	
Offset Frequency	<u>TBA.3</u>	<u>4</u>	Tx frequency offset adjustment	<u>OFDMA</u>
<u>Adjust</u>			(signed 32-bit, Hz units)	
			Specifies the relative change in	
			transmission frequency that the MS is	
			to make in order to better match the	
			RS. (This is fine-frequency adjustment	
			within a channel, not reassignment to	
			a different channel.). The MS shall	
			increase its transmit frequency if the	
			value is positive and decrease its	
			transmit frequency if the value is	
			negative.	
Ranging Status	<u>TBA.4</u>	<u>1</u>	Used to indicate whether uplink	<u>OFDMA</u>
			messages are received within	
			acceptable limits by RS.	
			1 = continue, 2 = abort, 3 = success	
Received Ranging	TBA.5	Variable	Bits 31:22 – Used to indicate the	OFDMA

Cala Attail 1			OEDM the second of the state	
Code Attributes			OFDM time symbol reference that	
			was used to transmit the ranging code.	
			Bits 21:16 – Used to indicate the	
			OFDMA subchannel reference that	
			was used to transmit the ranging code.	
			Bits 15:8 – Used to indicate the	
			ranging code index that was sent by	
			the MS.	
			Bits 7:0 – The 8 least significant bits	
			of the frame number of the OFDMA	
			frame where the MS sent the ranging	
			code.	
MS CINR mean	<u>TBA.6</u>	<u>1</u>	The MS CINR mean parameter	OFDMA
			indicates the CINR measured by the	
			RS from the MS. The value shall be	
			interpreted as a signed byte with units	
			of (TBD) dB. The measurement shall	
			be performed on the CDMA ranging	
			signal sent by the MS and averaged	
			over the measurement period.	
MS RSSI mean	TBA.7	<u>1</u>	The MS RSSI mean parameter	OFDMA
			indicates the Received Signal Strength	
			measured by the RS from the MS. The	
			value shall be interpreted as an	
			unsigned byte with units of (TBD) dB,	
			such that 0x00 is interpreted as (TBD)	
			dBm, an RS shall be able to report	
			values in the range (TBD) dBm to	
			(TBD) dBm. The measurement shall	
			be performed on the CDMA ranging	
			signal sent by the MS and averaged	
			over the measurement period	
MS Basic CID	TBA	2	MS Basic CID	OFDMA
MID DUSIC CID		<u> </u>		

Table xxx: Unsolicited RNG-RSP procedure triggered by CDMA BR ranging code in transparent RS systems

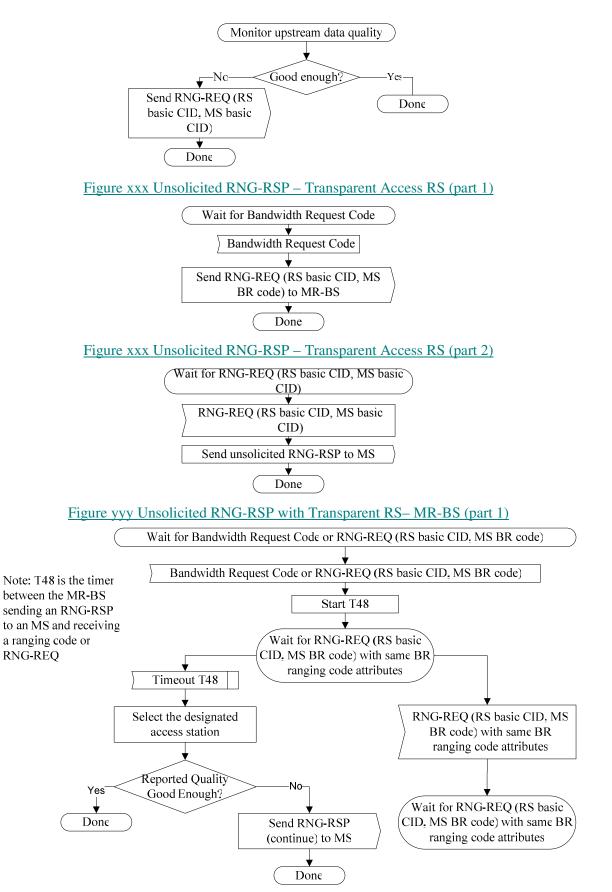


Figure yyy Unsolicited RNG-RSP with Transparent RS-MR-BS (part 2)