Project	IEEE 802.16 Broadband Wireless Access Working Group <http: 16="" ieee802.org=""></http:>						
Title	RS Location Report for Neighbor Discovery						
Date	2006-01-08						
Submitted							
Source(s)	Kanchei (Ken) Loa, Yi-Hsueh Tsai, Voice: +886-2-2739-9616						
	Chih-Chiang Hsieh, Yung-Ting Lee, loa@iii.org.tw						
	Hua-Chiang Yin, Shiann-Tsong Sheu,						
	Frank C.D. Tsai, Youn-Tai Lee,						
	Heng-Iang Hsu						
	Institute for Information Industry						
	8F., No. 218, Sec. 2, Dunhua S. Rd.,						
	Taipei City, Taiwan.						
	Peter Wang Adrian Boariu Shashikant Voice: +1 214-912-4613						
	Maheshwari Yousuf Saifullah Tony peter.wang@nokia.com						
	Reid Haibong Zheng						
	Nokia						
	6000 Connection Drive, Irving, TX						
	[add co-authors here]						
Re:	IEEE 802.16j-06/034: "Call for Technical Proposals regarding IEEE Project P802.16j"						
Abstract	This contribution proposes procedures for RS location report for neighbor discovery						
Purpose	Text proposal for 802.16j Baseline Document						
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion						
	and is not binding on the contributing individual(s) or organization(s). The material in this						
	document is subject to change in form and content after further study. The contributor(s)						
	reserve(s) the right to add, amend or withdraw material contained herein.						
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained						
	in this contribution, and any modifications thereof, in the creation of an IEEE Standards						
	publication; to copyright in the IEEE's name any IEEE Standards publication even though it						
	may include portions of this contribution; and at the IEEE's sole discretion to permit others to						
	reproduce in whole or in part the resulting IEEE Standards publication. The contributor also						
	acknowledges and accepts that this contribution may be made public by IEEE 802.16.						
Patent	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures						
Policy and	http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may						
Procedures	include the known use of patent(s), including patent applications, provided the IEEE receives						
	assurance from the patent holder or applicant with respect to patents essential for compliance						
	with both mandatory and optional portions of the standard." Early disclosure to the Working						
	Group of patent information that might be relevant to the standard is essential to reduce the						
	possibility for delays in the development process and increase the likelihood that the draft						

publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

RS Location Report for Neighbor Discovery

Introduction

This contribution describes RS location report for neighbor discovery. In order to facilitate the incorporation of this proposal into IEEE 802.16j standard, specific changes to the baseline working document IEEE 802.16j-06/026r1 are listed below.

Text Proposal

6.3.26 Relay station neighborhood discovery

6.3.26.1 RS Location Report

In order to assist RS neighborhood discovery, MR-BS should send an RLY_LOC_REP-REQ message defined in Table xxx. RLY_LOC_REP-REQ message should include reference location and may include report repetition interval.

<u>After RS receives the RLY_LOC_REP-REQ message, RS shall update its reference location if the message</u> includes a valid reference location. Then, RS shall report the deviation from the reference location by transmitting an RLY_LOC_REP-RSP message to the serving MR-BS. If the RLY_LOC_REP-REQ message includes a nonzero Report Repetition Interval, RS shall periodically send an RLY_LOC_REP-RSP message to the serving MR-BS every time interval defined by Report Repetition Interval.

<u>Upon receiving the RLY_LOC_REP-RSP message from an RS, the serving MR-BS may send an</u> <u>RLY_NBR-REP message to the RS, which contains the location information and CellID of neighbor RSs.</u>

The message sequence charts (Table xxx and Table yyy) and flow charts (Figure xxx and Figure yyy) define the RS location report process that shall be followed by compliant RSs and MR-BSs.

Table xxx - RLY_LOC_REP-REQ message format

<u>Syntax</u>	Size	Notes
RLY_LOC-REP_Message_Format() {	Ξ	
<u>Management message type = xx</u>	<u>8 bits</u>	
TLV Encoded Information		
1		

Table xxx -RLY_LOC_REP-REQ message encodings

	Type	Length	Value	<u>PHY</u>
	<u>(1 byte)</u>		(Variable-length)	<u>Scope</u>
Report Repetition	TBA	<u>1</u>	Repetition Internal for RLY_LOC_REP-RSP (unit:	<u>OFDMA</u>
Internal			<u>frame)</u>	
Reference Location	TBA	<u>12</u>	Byte 11:8 – Rx: X-axis reference position in WGS84	<u>OFDMA</u>

	(unit: meter)	
	Byte 7:4 – Ry: Y-axis reference position in WGS84	
	(unit: meter)	
	Byte 3:0 -Rz: Z-axis reference position in WGS84	
	(unit: meter)	

Table xxx - RLY_LOC_REP-RSP message format

Syntax	Size	Notes
<pre>RLY_LOC_REP-RSP_Message_Format() {</pre>	=	-
<u>Management message type = xx</u>	<u>8 bits</u>	-
Frame sequence number (FSN)	<u>16 bits</u>	Frame sequence number for estimated position
<u>Px</u>	<u>16 bits</u>	Estimated RS X-axis position deviation from the
		reference in WGS84 (unit: meter)
<u>Py</u>	<u>16 bits</u>	Estimated RS Y-axis position deviation from the
		reference in WGS84 (unit: meter)
Pz	<u>16 bits</u>	Estimated RS Z-axis position deviation from the
		reference in WGS84 (unit: meter)
TLV Encoded Information	variable	TLV specific
1	_	-

Table xxx -RLY_LOC_REP-RSP message encodings

	Type	Length	Value	<u>PHY</u>
	<u>(1 byte)</u>		(Variable-length)	<u>Scope</u>
Predicted Position	TBA	<u>7</u>	Bytes 6 – Frame number: offset between FSN for	<u>OFDMA</u>
Info			predicted position and FSN for estimated position	
			Bytes 5:4 - PPx: Predicted RS X-axis position	
			deviation from the reference in WGS84 (unit: meter)	
			Bytes 3:2 - PPy: Predicted RS Y-axis position	
			deviation from the reference in WGS84 (unit: meter)	
			Bytes 1:0 - PPz: Predicted RS Z-axis position	
			deviation from the reference in WGS84 (unit: meter)	
Predicted Position	TBA	<u>4</u>	Byte 3 – Frame number: offset to frame number of	<u>OFDMA</u>
deviation from			predicted position	
Estimated			Byte 2 – PPx: Predicted RS X-axis position deviation	
position Info			from the estimated position in WGS84 (unit: meter)	
			Byte 1 – PPy: Predicted RS Y-axis position deviation	
			from the estimated position in WGS84 (unit: meter)	
			Byte 0 – PPz: Predicted RS Z-axis position deviation	
			from the estimated position in WGS84 (unit: meter)	
Velocity (High	TBA	<u>3</u>	Byte 2 – Vx: RS velocity in WGS84 X-axis (unit: 0.5	<u>OFDMA</u>
Speed) Info			meter/second)	

			Byte 1 – Vy: RS velocity in WGS84 Y-axis (unit: 0.5meter/second)Byte 0 – Vz: RS velocity in WGS84 Z-axis (unit: 0.5meter/second)	
<u>Velocity (Low</u> <u>Speed) Info</u>	<u>TBA</u>	<u>3</u>	Byte 2 – Vx: RS velocity in WGS84 X-axis (unit: 0.1meter/second)Byte 1 – Vy: RS velocity in WGS84 Y-axis (unit: 0.1meter/second)Byte 0 – Vz: RS velocity in WGS84 Z-axis (unit: 0.1meter/second)	<u>OFDMA</u>
Acceleration (High Dynamic) Info	TBA	<u>3</u>	Byte 2 – Ax: RS acceleration in WGS84 X-axis (unit: centimeter/second ²)Byte 1 – Ay: RS acceleration in WGS84 Y-axis (unit: centimeter/second ²)Byte 0 – Az: RS acceleration in WGS84 Z-axis (unit: centimeter/second ²)	<u>OFDMA</u>
<u>Acceleration</u> (Low Dynamic) Info	TBA	<u>3</u>	Byte 2 – Ax: RS acceleration in WGS84 X-axis (unit: millimeter/second²)Byte 1 – Ay: RS acceleration in WGS84 Y-axis (unit: millimeter/second²)Byte 0 – Az: RS acceleration in WGS84 Z-axis (unit: millimeter/second²)	<u>OFDMA</u>

Table xxx – RLY_NBR-REP message format

Syntax	Size	Notes
RLY_NBR-REP_Message_Format() {	-	-
<u>Management message type = xx</u>	<u>8 bits</u>	-
Frame sequence number (FSN)	<u>16 bits</u>	Frame sequence number for estimated position
Nr. of neighbor RS	-	-
for (i=0; i< Nr. of neighbor RS; i++) {	-	-
RS Cell ID	<u>8 bits</u>	RS cell ID
<u>Px</u>	<u>16 bits</u>	Estimated RS X-axis position deviation from the
		reference in WGS84 (unit: meter)
<u>Py</u>	<u>16 bits</u>	Estimated RS Y-axis position deviation from the
		reference in WGS84 (unit: meter)
<u>Pz</u>	<u>16 bits</u>	Estimated RS Z-axis position deviation from the
		reference in WGS84 (unit: meter)
1	=	
1	-	

Table xxx: Relay location report (part 1)

Figure yyy Relay location report – MR-BS