<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>RS Autonomous Synchronization</td>
</tr>
<tr>
<td>Date</td>
<td>2006-03-05</td>
</tr>
<tr>
<td>Submitted</td>
<td>2006-03-05</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shiann-Tsong Sheu, Hua-Chiang Yin, Yung-Ting Lee, Chih-Chiang Hsieh, Frank C.D. Tsai, Youn-Tai Lee, Heng-Iang Hsu Institute for Information Industry 8F., No. 218, Sec. 2, Dunhua S. Rd., Taipei City, Taiwan. [add co-authors here]</td>
</tr>
<tr>
<td>Re:</td>
<td>IEEE 802.16j-07/007r2: “Call for Technical Comments and Contributions regarding IEEE Project 802.16j”</td>
</tr>
<tr>
<td>Abstract</td>
<td>This contribution proposes procedures for RS autonomous synchronization</td>
</tr>
<tr>
<td>Purpose</td>
<td>Text proposal for 802.16j Baseline Document</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
<tr>
<td>Patent Policy and Procedures</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.</td>
</tr>
</tbody>
</table>
RS Autonomous Synchronization

Global navigation satellite system (GNSS) is the generic name given to the satellite-based navigation systems including GPS (global positioning system), GLONASS (global navigation satellite system), and Galileo. GPS is the first passive one-way ranging satellite system to become operational. While GPS was under development by United States (US), the Soviet Union undertook to develop a similar system, called GLONASS. Like GPS, GLONASS was designed primarily for the military, and was also offered for civil use. In a later time, the European Union decided to develop a similar system planed to under civil control. This system is called Galileo, which is now developed by European Space Agency (ESA).

This contribution describes RS time synchronization with MR-BS. In order to facilitate the incorporation of this proposal into IEEE 802.16j standard, specific changes to the baseline working document IEEE 802.16j-06/026r2 are listed below.

Text Proposal

6.3.2.3 MAC management messages

6.3.2.3.25 Clock Comparison (CLK-CMP) message

6.3.2.3.25.1 RS Clock Synchronization (CLK-SYNC) message

In MR network systems with service flows carrying information that requires the RSs to transmit preamble synchronously, CLK-SYNC messages shall be periodically broadcast by access stations. Implementation of the CLK-SYNC message at RS is optional. If provisioned to do so, the access station shall keep a fixed time difference between preamble and GPS time at each frame and transmit one CLK-SYNC message according to the format shown in Table xxx.

Upon receiving CLK-SYNC message, RS shall synchronize with the access station and send its DL frame start preamble synchronously with MR-BS. Algorithms to synchronize with the access station are out of scope of this specification.

Table xxx – CLK-SYNC message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK-SYNC_message_format() {</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Management Message Type = xx</td>
<td>8 bits</td>
<td>-</td>
</tr>
<tr>
<td>Frame Sequence Number</td>
<td>8 bits</td>
<td>8-LSB Frame Sequence Number</td>
</tr>
<tr>
<td>Fraction GPS time</td>
<td>16 bits</td>
<td>Fraction GPS time for frame-start DL preamble of current frame in unit of 1 micro second, where fraction GPS time defined as the GPS time minus the integer part of GPS time in unit of frame duration. fraction GPS time [\equiv GPS \text{ time} - \text{frame duration} \times \frac{GPS \text{ time}}{\text{frame duration}}]</td>
</tr>
<tr>
<td>}</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>