Abstract In this contribution, a method of preamble selection for a moving RS is proposed.

Purpose To incorporate the proposed text into the P802.16j Baseline Document (IEEE 802.16j-06/026r3)

Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this
contribution may be made public by IEEE 802.16.

<table>
<thead>
<tr>
<th>Patent Policy and Procedures</th>
</tr>
</thead>
</table>
| The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures [http://ieee802.org/16/ipl/patents/policy.html], including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site [http://ieee802.org/16/ipl/patents/notices>].
Moving Relay Station Preamble/Segment Selection

Hang Zhang, Peiying Zhu, Mo-Han Fong, Wen Tong, Israfil Bahceci, David Steer, Gamini Senarath, Derek Yu, Mark Naden, G.Q. Wang

Nortel

Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shiann-Tsong Sheu, Hua-Chiang Yin, Chih-Chiang Hsieh, Yung-Ting Lee, Frank C.D. Tsai, Heng-Iang Hsu, Youn-Tai Lee

III

Dorin Viorel,
Fujitsu Microelectronics Canada Inc.

1 Introduction

This contribution was discussed in the session 48 and rejected. The reason for the rejection is “Broadcasting of this message is not required”. The rejection reason is not clear since there are several messages defined in the proposal. In addition, the reason does not really provide any clues on why the message is not required. However, based on some offline discussion with other members, there is a concern that if the reserved preamble pool is too small, then there is a possibility that two MRSs will have preamble collision. This contribution is updated to address this concern and to be aligned with the new baseline document.

2 Problem Statement

A moving RS needs to transmit 802.16e frame start preamble to enable attached MSs to perform DL synchronization. When a moving RS traverses through a network, its cell ID and preamble assignment needs to be updated in order to avoid ID and preamble collision. However, once a preamble re-assignment occurs, its associated MSs are required to do handovers, even in the case where no relative movement between the MRS and MSs. The simultaneous MS handover may cause service interruptions and excess amount of overhead over the MR-BS and MRS link. Therefore, it is desirable to avoid the frequent update of cell ID and preamble.

3 Proposal

We propose that a small set of preamble indexes are reserved (network-wide) for moving relay station. The benefit is the elimination of preamble collision of a moving RS with fixed RS(s) or MR-BS during movement of a moving RS, by which handover of MS(s) caused by preamble change can be fully avoided. The possibility of collision of preambles of two moving RS(s) is very low. When either preamble collision or high co-channel interference events happen, we suggest that two moving RSs form a temporary virtual RS grouping. Once two moving RSs move apart, it can then go back to individual RS station. By doing so, the preamble reassign procedure can be avoid entirely, so does the handover of all associated MSs. The virtual RS grouping forming or deletion process are described in the baseline document.

In case that RS or MR-BS do not support virtual RS grouping, then it is desirable to have a mechanism for preamble reselection. When either preamble collision or high co-channel interference events happen, we suggest that a moving RS changes its preamble only when some conditions are met. The strength and the duration of strong interference will be used as the factors for the preamble/segment reselection (i.e., preamble reselection thresholds). By doing so, the possibility of preamble reselection (hence MS handover) during movement of a moving RS can be reduced.
Depending on a deployment scenario, it is not necessary to have moving RS in a network; therefore, we should allow MR-BS to configure these operations.

We propose that MR-BS(s) broadcast the reserved preamble indexes for moving RS(s).

4 Text Proposal

4.1 Broadcast of reserved preambles and preamble reselection thresholds for moving RS

[Insert following text into XXX]

11. xxx RS_CD message TLV encoding

11.xxx.1 Preamble indexes reserved for moving relay station

This field may be used by a MR-BS to broadcast to relay stations the preamble indexes reserved for moving relay station.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Variable</td>
<td>Bits#0-#3: number of preamble indexes (N)</td>
<td>RS_CD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit#4-(7N+3): List of N preamble indexes (7 bits each)</td>
<td></td>
</tr>
</tbody>
</table>

11.xxx.2 Preamble reselection thresholds

This field may be used by a MR-BS to broadcast the preamble reselection thresholds for moving relay station.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Bits #0 -#7: Interference signal strength threshold</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bits#8-#11: Interference duration threshold in number of frames</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bits #12-#15: Window for reselecting the preamble (segment) in unit of 10 frames</td>
<td>RS_CD</td>
</tr>
</tbody>
</table>

4.2 Moving RS initial network entry

[Insert following text into XXX]

6.3.9.16.3 RS network entry and initialization
6.3.9.16.3.1 Fixed RS Preamble selection

6.3.9.16.3.2 Moving RS preamble selection
During the initial network entry, a moving RS shall obtain parameter “preamble indexes reserved for moving RSs’ from
MR-BS broadcast RS_CD message. The moving relay station shall measure the strength of preambles reserved for
moving RS and report to MR-BS through RS_NBR-MEAS-REP (see 6.3.2.3.68) message the preamble index with the least
signal strength. MR-BS shall assign the preamble index based on the report from the moving RS and any additional
available information.

During the movement of a moving RS, if following events happen:
Preamble collision
Co-channel interference strength measured is higher than the preamble(segment)-reselection threshold and the
interference lasts longer than the duration threshold
The moving RS may re-select the preamble (segment) within the preamble-reselection window.
The parameters governing the preamble (segment) reselection procedure of moving RSs is broadcasted in the RS
configuration description (RS_CD) message as TLV of Preamble (segment) reselection threshold.

+++++++++++++++ End Text +++