
Title: RS Initial Network Entry and Re-entry

Date Submitted: 2007-03-05

Source(s): Hang Zhang, Peiying Zhu, Mo-Han Fong, Wen Tong, David Steer, Gamini Senarath, Derek Yu, Mark Naden, G.Q. Wang

Nortel
3500 Carling Avenue
Ottawa, Ontario K2H 8E9

Kanchei (Ken) Loa, Yi-Hsueh Tsai, Shian-Tsong Sheu, Hua-Chiang Yin, Chih-Chiang Hsieh, Yung-Ting Lee, Frank C.D. Tsai, Heng-lang Hsu, Youn-Tai Lee

Institute for Information Industry
8F, No. 218, Sec. 2, Dunhua S. Rd., Taipei City 106, Taiwan, ROC.

Chie Ming Chou Wern-Ho Sheen, Fang-Ching Ren, Jen-Shun Yang, Tzu-Ming Lin, I-Kang Fu, Ching-Tarng Hsieh, Kun-Ying Hsieh

Industrial Technology Research Institute (ITRI)
/ National Chiao Tung University (NCTU)
195,Sec. 4, Chung Hsing Rd.
Chutung, Hsinchu, Taiwan 310, R.O.C

Hyukjoon Lee, Hyun Park, Yong-Hoon Choi, Young-uk Chung, Seung Hyong Rhee

Kwangwoon University 447-1 Wolgye-Dong, Nowon-Gu, Seoul, 139-701, Korea

Voice: +1 613 7631315
wentong@nortel.com
pyzhu@nortel.com
loa@nmi.iii.org.tw
chieming@itri.org.tw
hlee@kw.ac.kr
netipark@kw.ac.kr
yhchoi@kw.ac.kr
yuchung@kw.ac.kr

Abstract

This contribution proposes RS initial network entry procedures.

Purpose

To incorporate the proposed text into the P802.16j Baseline Document (IEEE 802.16j-06/026r2)

Notice

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
RS Initial Network Entry and Re-entry

1 Introduction

When a relay station initially enters or re-enters a network, most of network operations are the same as MS does. However, some additional operations may be required for a RS, such as path selection operation and operation parameter configuration. Those operations are special to RS and shall be defined in the standard.

2 RS initial network entry and re-entry proposal

2.1 RS initial network entry
We propose the RS initial network entry as shown in Figure 1. The RS initial ranging procedure shall be the same as MS initial ranging procedure as defined in Section 6.3.10. Compared with MS initial network entry, two-three operation steps are added and four original steps are removed. The new operations are:

- **Desired Access Station Selection**
 To assist desired access station selection by the RS entering the MR network, the MR-BS and RSs may optionally broadcast information related to their end-to-end path quality. The end-to-end path quality is represented in the form of an ETE metric. Some examples of computing the ETE metric are suggested in C802.16j_06-158r3 for informative purposes.

- **Access point attachment (path) negotiation**
 This procedure enables a RS and the MRBS to negotiate the access point attachment of this RS. This operation happens after registration and before RS operation parameter configuration. During this operation a relay station is allowed to report to the MRBS the radio environment measurements. The MRBS is allowed to make final decision regarding the access point attachment selection (e.g., serving station selection). In order to support this operation, we suggest either reuse RNG-REQ/RSP message with a new TLV added in RNG-REQ message or introduce a new message called as RS_path request/response.

- **Relay station operation parameter configuration**
 This procedure allows a RS to obtain necessary operation configuration parameters that must be configured over-the-air. One example of such parameters is the frame beginning preamble (802.16e
preamble) configuration since the configuration of such parameters usually requires radio environment measurement of a RS. To enable this procedure, we suggest to introduce a new MAC management message – RS configuration request/response message (RS_Config-REQ/RSP).

- The removed steps from the MS network entry include IP connectivity, establish time of day, transfer operational parameters and establish provision connection.

The reason for the removal of these steps is that these procedures are used for network layer’s application and RS doesn’t have its own packets from network.
In addition, the existing basic capability negotiation procedure needs to be enhanced to include negotiation of RS specific capabilities, e.g. transparent RS, non-transparent RS etc. As part of the basic capabilities negotiation, BS is notified that the station performing network entry is an RS.

2.2 RS network re-entry

The usage of RS network re-entry is when the network or an operating RS wants to perform path optimization for improving the path and/or network performance. Compared with the RS initial network entry, some of the steps can be skipped in the RS network re-entry as shown in Fig. 1 in order to speed up the process. In our design, this can be achieved by checking the RS network re-entry optimization parameters which are indicated in the RS_Path response message.

3 Proposed text change

We propose the following modifications to 802.16e standard

3.1 RS initial network entry and re-entry description

[Add section 6.3.9.16.3 after section 6.3.9.16.2 in page 27]

[Insert new subclause 6.3.9.16.3]

6.3.9.16.3 RS network (re)-entry and initialization

RS network (re)-entry procedure is shown in Figure xxx.
From this figure, two new procedures are added to RS network (re)-entry procedure. They are path selection negotiation, relay station operational parameters configuration.

The RS initial ranging procedure shall be the same as MS initial ranging procedure as defined in Section 6.3.10.

[Insert a new sub clause 6.3.9.16.3.1]
6.3.9.16.3.1 Desired Access Station Selection

The MR-BS and the RS may transmit the TLV encoded parameter ETE Metric in the DCD message to support RS network entry in the MR network.

The use of these TLV encodings is defined in section 11.4 in Table 385.

The RS attempting network entry may use the DCD TLV encodings to select the desired access station to enter the MR network through it. The RS shall then proceed with the rest of the network entry procedure as defined in Figure XXX with the desired access station.

6.3.9.16.3.2 Path selection negotiation

This procedure enables a RS and the MR-BS to negotiate the path selection of this RS. This is an optional procedure as indicated by the RS network entry optimization TLV in the RNG-RSP message. This operation happens after registration and before RS operation parameter configuration. During this operation a relay station shall report to the MR-BS the radio environment measurements. The MR-BS shall make final decision regarding the path selection, i.e., access station selection. Access station can be an RS or an MR-BS. RS_path-REQ/RSP message shall be used for this operation. A RS shall send RS_path-REQ message to report its radio environment measurements to its associated MR-BS. The MR-BS shall determine the path of this RS based on the reported radio measurements and other information such as path loading and indicates the path selection for this RS using RS_path-RSP message. In the RS_path-RSP message, the selected access station ID and RS network re-entry optimization parameters will be given to assist the network (re)-entry process.

To assist access station selection by the RS, an access station or serving MR-BS may optionally broadcast information related to end-to-end path quality. [The detailed definition of the broadcast information related to path quality is TBD]

6.3.9.16.3.3 Relay station operational parameter configuration

This procedure allows a RS to obtain necessary operational configuration parameters that must be configured over-the-air. One example of such parameters is the frame start beginning preamble index (802.16e preamble) configuration since the configuration of such parameters usually requires radio environment measurement of a RS. During this procedure, RS and MMR-BS shall use RS configuration request/response message (RS_Config-REQ/RSP) to negotiate the configuration. A MR-BS shall determine the parameter configurations and indicate to the RS using RS_Config-REQ message. RS responds to MR-BS with RS_Config-RSP to confirm the configuration. The parameters configured during this procedure include:

- 802.16e frame start preamble index for a relay station which is configured to transmit 802.16e frame start preamble
[Insert the following to the end of 6.3.2.3.6:]

The following TLV parameter shall be included in the RNG-RSP message when the RS is attempting to perform network entry or re-entry and the target MR-BS wishes to identify entry or re-entry process management messages that may be omitted during the current entry or re-entry process.

RS Network Entry Optimization (see 11.6)

Identifies entry or re-entry process management messages that may be omitted during the current entry or re-entry attempt.

[Change Table 367 as indicated:]

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS network entry optimization</td>
<td>TBA</td>
<td>1</td>
<td>Bit #0: set to 1 to indicate path selection is omitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit #1-7: reserved</td>
</tr>
</tbody>
</table>

3.2 Introduction of RS configuration message (RS_Config-REQ/RSP)

[Modify the last row in Table 14 in page 4 as follows]

<table>
<thead>
<tr>
<th>Type</th>
<th>Message name</th>
<th>Message description</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>68-255-68</td>
<td>RS_Config-REQ</td>
<td>RS configuration request message sent by RS</td>
<td>Basic</td>
</tr>
<tr>
<td>69</td>
<td>RS_Config-RSP</td>
<td>RS configuration response message sent by MMR-BS</td>
<td>Basic</td>
</tr>
<tr>
<td>70-255</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Add the following text after section 6.3.2.3.64 in page 13]

[Insert new subclause 6.3.2.3.65 and 6.3.2.3.66]

6.3.2.3.65 RS configuration request message

This message may be transmitted by a MR-BS to configure some physical layer operation parameters of the RS.
Table XXX. RS_Config-REQ message format.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_Config-REQ format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message type = 67</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV</td>
<td></td>
<td>Variable</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.2.3.66 RS configuration response message

This message shall be transmitted by a RS to confirm the configuration request from the MR-BS.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_Config-RSP format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message type = 68</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Introduction of RS path selection message (RS_path-REQ/RSP)

[Modify the last row in Table 14 in page 4 as follows]

<table>
<thead>
<tr>
<th>Type</th>
<th>Message name</th>
<th>Message description</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-255</td>
<td>68</td>
<td>68</td>
<td>Basic</td>
</tr>
<tr>
<td>67</td>
<td>69</td>
<td>69</td>
<td>Basic</td>
</tr>
<tr>
<td>70-255</td>
<td>70-255</td>
<td>70-255</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

[Add the following text after section 6.3.2.3.64 in page 13]

[Insert new subclause 6.3.2.3.67 and 6.3.2.3.68]

6.3.2.3.67 RS path selection request message

This message may be transmitted by a RS to report its radio environment measurement.
Table XXX. RS_path-REQ message format.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_path request format {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message type = 67</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Number of reports</td>
<td>2 bits</td>
<td></td>
</tr>
<tr>
<td>For (i=0;i< Number of reports; i++) {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>__ Station ID</td>
<td>24 bits</td>
<td>LSB 24 bits of Station ID present in DL-MAP</td>
</tr>
<tr>
<td>__ CINR mean</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of reports

This field indicates the number of measurement reports in this message.

Station ID

This field indicates identity of the station (MR-BS or RS) to which a RS may access. The Station ID includes the 24 LSB of Station ID present in DL-MAP of this station.

CINR mean

The CINR mean parameter indicates the CINR in dB measured at the RS on the downlink signal of a particular station with BSID in BSID field. The value shall be interpreted as a signed byte with the resolution of 0.5dB. The measurement shall be performed on subcarriers of the frame preamble that are active in the particular station’s segment and averaged over the measurement period.

6.3.2.3.68 RS path selection response message

This message shall be transmitted by a MMR-BS to a RS as a response to the RS_path request message. MMR-BS use this message to indicate the serving station the RS shall access to.

Table XXX. RS_path-RSP message format.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_path response format {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management message type = 67</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>__ Station ID</td>
<td>24 bits</td>
<td>LSB 24 bits of Station ID present in DL-MAP</td>
</tr>
<tr>
<td>RS network re-entry optimization</td>
<td>8 bits</td>
<td>For each bit location, a value of ‘0’ indicates the associated reentry management messages is required, a value of ‘1’ indicates the reentry management message is omitted. Bit #0: Omit SBC-REQ/RSP management</td>
</tr>
</tbody>
</table>
Exchange of management messages if set to ‘1’
Bit #1: Omit PKM Authentication phase except TEK phase if set to ‘1’.
Bit #2: Omit PKM TEK creation phase if set to ‘1’.
Bit #3: Omit REG-REQ/RSP management if set to ‘1’.
Bit #4: Omit path selection phase if set to ‘1’.
Bit #5~7: Reserved

Station ID
This field indicates identity of the station to which a RS shall access. The Station ID includes the 24 LSB of Station ID present in DL-MAP of this station.

RS network re-entry optimization
For each bit location, a value of ‘0’ indicates the associated reentry management messages is required, a value of ‘1’ indicates the reentry management message is omitted.
Bit #0: Omit SBC-REQ/RSP management messages if set to ‘1’.
Bit #1: Omit PKM Authentication phase except TEK phase if set to ‘1’.
Bit #2: Omit PKM TEK creation phase if set to ‘1’.
Bit #3: Omit REG-REQ/RSP management if set to ‘1’.
Bit #4: Omit path selection phase if set to ‘1’.
Bit #5~7: Reserved

6.3.2.3.1 Downlink Channel Descriptor (DCD) message

Insert the following text at the end of the 6.3.2.3.1:

The following parameter, which are coded as TLV tuples as defined in 11.4, may be included in the DCD message.

ETE Metric
The ETE metric of the path between the RS transmitting the DCD and the BS it is associated to.

11.4 DCD management message encodings

Insert the following entries into Table 385:

Table 385 – DCD channel encoding (continued)
3.4 RS Basic Capabilities Negotiation

Modify 6.3.2.3.23 as follows

6.3.2.3.23 SS and RS Basic Capability Request (SBC-REQ) message

Change the text in the first paragraph as indicated:

The SS SBC-REQ shall be transmitted by the SS or RS during initialization. An SS or RS shall generate SBC-REQ messages in the form shown in Table 51.

Insert the following text at the end of 6.3.2.3.23:

An RS shall generate SBC-REQs including the following parameter:

<table>
<thead>
<tr>
<th>Basic CID (in the MAC Header)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The CID in the MAC Header is the Basic CID for this RS, as assigned in the RNG-RSP message.</td>
</tr>
</tbody>
</table>

All other parameters are coded as TLV tuples.

Basic Capability Requests contain those RS Capabilities Encodings (11.8) that are necessary for effective communication with the RS during the remainder of the initialization protocols. Only the following parameters shall be included in the Basic Capabilities Request:

- Physical Parameters Supported (see 11.8.3)
- Bandwidth Allocation Support (see 11.8.1)

Modify 6.3.2.3.24 as follows

6.3.2.3.24 SS or RS Basic Capability Response (SBC-RSP) message

Insert the following text before the last sentence:

An MR-BS shall generate SBC-RSPs in the form shown in Table 52, including both of the following parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type (1 byte)</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETE Metric</td>
<td>62</td>
<td>1</td>
<td>Bit #0-2: hop count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bits #3-7: reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Type (1 byte)</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETE Metric</td>
<td>62</td>
<td>1</td>
<td>Bit #0-2: hop count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bits #3-7: reserved</td>
</tr>
</tbody>
</table>
CID (in the MAC Header)
The CID in the MAC Header is the Basic CID for this RS, as appears in the RNG-REQ message.

The following parameters shall be included in the SBC-RSP if found in the SS SBC-REQ:

Physical Parameters Supported (see 11.8.3)
Bandwidth Allocation Support (see 11.8.1)

The MR-BS responds to the subset of RS capabilities present in the SBC-REQ message. The MR-BS responds to the RS capabilities to indicate whether they may be used. If the MR-BS does not recognize an RS capability, it may return this as “off” in the SBC-RSP. Only capabilities set to “on” in the SBC-REQ may be set “on” in the SBC-RSP, as this is the handshake indicating that they have been successfully negotiated.

[Insert new subclause 11.8.3.7.20]

11.8.3.7.20 MR PHY feature support

This TLV indicates the MR PHY features supported by the RS and the MR-BS.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xx</td>
<td>1</td>
<td>Bit #0: Access zone preamble transmission support</td>
<td>SBC-REQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bits #1-7: Reserved</td>
<td>SBC-RSP</td>
</tr>
</tbody>
</table>

[Insert new subclause 11.7.27]

11.7.27 MR MAC feature support

This TLV indicates the MR features supported by the RS and the MR-BS.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xx</td>
<td>1</td>
<td>Bit #0: RS scheduling support</td>
<td>REG-REQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #1: NBR-ADV generating</td>
<td>REG-RSP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #2: Tunneling support</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #3: RS mobility support</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #4: Child RS network entry support</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #5-7: Reserved</td>
<td></td>
</tr>
</tbody>
</table>
End Text