Re: This is a response to Call for Technical Proposals regarding IEEE Project P802.16j.

Abstract The document contains technical proposals for IEEE P802.16j that would provide an MS channel measurement and its report in RS.

Purpose The document is submitted for review by 802.16 Working Group members.

Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures, including the statement “IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard. “Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site.
RS Measurements and Channel Estimation between transparent RS and MS

Sungcheol Chang, Juhee Kim and Chulsik Yoon

ETRI

I-Kang Fu

ITRI

1. Introduction
All the radio resources are allocated by the MMR-BS and resource allocation information is broadcasted to all the RSs and MSs. When the MS moves around within cell coverage, the MMR-BS should estimate the radio channel of the MS. To minimize the used radio resource for sending the data to the MS, the MMR-BS shall select RSs that relay the data and are located near the MS. The relay path to the MS is calculated and known to the MMR-BS. The MS has a limit of maximum power transmission in uplink. It’s appropriate that the uplink path is established by the MS via the RS near the MS. The channel information about the MS shall be known to the MMR-BS.

The MS starts ranging procedures in which the CDMA code is transmitted. The RNG-RSP message adjusts transmission parameters to maintain good communication quality between the MS and the target, either RS or MMR-BS. The CDMA code has no information about the MS involved in the ranging procedure. This adjustment of transmission parameters is done in the MS whose identifier is not known to the MMR-BS because the CDMA code does not identify the MS. When selecting the relay path, the MMR-BS utilizes the local information.

After the network entry procedure, the fixed RS within cell coverage makes a relay operation between entities. Before the MMR-BS allocates the radio resource in which the RS sends or receives the data, it’s important that the MMR-BS gets information about radio channel between entities. The measurement of the radio channels either between RSs or between the RS and the MMR-BS is required before the MMR-BS selects a path between the MMR-BS and the RS. Given the RS, the MMR-BS has a path selection algorithm and can determine an optimal path that is calculated from the measurements of radio channels.

When the MS moves around within cell coverage, the measurements of the radio channel from the MS to either the RS or the MMR-BS shall be known to the MMR-BS for the purpose of resource allocation. The MS only can receive the downlink frames that do not have information about RS identification. That is, there is no explicit procedure that the MS informs the MMR-BS of the measurements of the radio channel to RS or MMR-BS.

2. Proposed Solution
When the MS sends fast feedback channel or PHY burst in uplink, it is required that the RSs measure its unicast data and send the measurement information to the MMR-BS. The reported information is utilized to estimate the radio channel between the MS and the RS. Figure 1 shows the RS Measurement Report (RM-RPT) message for the RS to send the received information to the MMR BS.
How does the RS get the uplink allocation information used for measuring the received signals from the MSs? This contribution proposes that the UL-MAP is utilized for getting the uplink allocation information. This approach does not require additional signaling overhead for the MMR-BS to notify the allocation information to the RS. Receiving UL-MAP and extracting uplink allocation information, the RS measures the received signals transmitted by the MSs. The measured value are filtered and sent by the RS. The thresholds are used for filtering the received signals and are broadcasted in the UCD messages. Figure 2 shows automatic measurement and filtering operation for the uplink allocation specified by the UL-MAP.

This filtering of the measurements is to reduce the number of report events. Figure 3 shows the thresholds that define the range of the measured value. The RS shall maintain the information about MSs including the measured values on the radio channels and the history of measurement reports during a interval. When the measurement value of the MS is in the different range compared to the range at previous report of the MS, the RS shall send the RM-RPT message to the MMR-BS and inform the MMR-BS of the change of the range so that the MMR-BS uses this updated channel information. The thresholds describing the ranges of measurement value are specified by “RS measurement report thresholds”, which is to minimize the number of report events.
RS can report the measurement on the received signal

Out of service

Figure 3 MS measurement report thresholds.

For an example, Figure 4 shows three reports from RSs for the MS. RS1 and RS2 report information that the received signal from the MS is in the range R1. Based-on the reported information RS1 and RS2 can receive unicast data transmitted by the MS and relay it to the MMR-BS with established relay paths. That is, the MMR-BS selects RS1 and RS2 as relaying entities near the MS.

Figure 4 MS measurement report thresholds.

To maintain good communication quality between the RS and the MS, the MS should adjust communication parameters in conjunction with the RS’s receiving timing. This requires that the RS sends the adjustment parameters to the MMR-BS. The MMR-BS sends adjustment parameters to the MS. The RNG-RPT message can be sent to give the MMR-BS the detected information about CDMA codes on the ranging region in uplink.

The BS intends to control the RS for the measurement. When the MS moves to the other BS or disconnects, the RS shall stop sending the measurement of the absent MS. The measurement information for the specified MS can be sent by the RS periodically or once by the request of the MMR-BS. The RS Measurement Control Request (RMC-REQ) message and the RS Measurement Control Response (RMC-RSP) message are exchanged for those purposes.
Text Proposals

[Insert the text after 6.3.2.3.61:]

6.3.2.3.62 RS Measurement Report (RM-RPT) message

If the RS is required to report channel measurements, it shall send the RS Measurement Report (RM-RPT) message in the form shown in Table aaa to the MMR-BS.

Table aaa- RM-RPT format

<table>
<thead>
<tr>
<th>Name</th>
<th>Length</th>
<th>Value (Variable-length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-RPT_Message_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type</td>
<td>8 bits</td>
<td>8 bits</td>
</tr>
<tr>
<td>Frame Number</td>
<td>8 bits</td>
<td>8 LSB of the frame number</td>
</tr>
<tr>
<td>N_Reports</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>For (i=0; i<N_Reports; i++) {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report indicator</td>
<td>8 bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #1-#0: Report value type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b00: No report value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b01: Threshold Index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b10: Measured CINR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b11: Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit #2-#7: Reserved</td>
</tr>
<tr>
<td>Basic CID</td>
<td>16 bits</td>
<td></td>
</tr>
<tr>
<td>If (Report value type == 0b01) {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Index</td>
<td>8 bits</td>
<td>The index of the field, “RS measurement report thresholds”, that the measured CINR value is in the range from the threshold value of this index to the threshold value of next index.</td>
</tr>
<tr>
<td>} else if (Report value type == 0b10) {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINR</td>
<td>8 bits</td>
<td>Signed integer, in units of 0.25dB.</td>
</tr>
<tr>
<td>} }</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV Encoding Information</td>
<td>variable</td>
<td>TLV specific</td>
</tr>
</tbody>
</table>

An RS shall generate RM-RPT messages in the form shown in Table aaa, including the following parameters:

CID (in the generic MAC header)

RS’s Basic CID.

Frame Number

8 LSB of the frame number in which this message is transmitted by the RS.
The following parameters shall be included in the RM-RPT message:

N_Report
The number of report elements that the RS sends to the MMR-BS.

Report indicator
Bitmap indicator of report fields that the RS reports.

- Bit #1-#0: Report value type. If the value is set to zero, there is no report value. If 0b01, the RS shall report the measurements in form of “Threshold index” and if 0b10, the RS shall inform the MMR-BS of CINR.
- Bit #2-#7: Reserved.

According to “Report indicator” that the RS indicates, the RM-RPT message includes the followings:

Basic CID
Basic CID allocated to the MS.

Threshold index
This is an index of “RS measurement report thresholds”. The CINR of received signal from the MS with Basic CID is in the range from the threshold value of “RS measurement report thresholds” indexed by “Threshold index” to the threshold value indexed by next index, “Threshold index” plus one. 0xff means that the RS cannot maintain the communication link to the MS.

CINR
This parameter indicates the CINR measured by RS from the MS. It shall be interpreted as a signed value in units of 0.25 dB.

The RM-RPT message shall contain the following:

HMAC Tuple (see 11.1.2)
The HMAC Tuple attribute contains a keyed message digest (to authenticate the sender). The HMAC Tuple attribute shall be the final attribute in this message’s attribute list.

6.3.2.3.63 RS Measurement Control Request (RMC-REQ) message
The MMR-BS sends the RMC-REQ message in the form of Table bbb to the RS. This message forces the RS to control RS’s measurement operations.

Table bbb- RMC-REQ format

<table>
<thead>
<tr>
<th>Name</th>
<th>Length</th>
<th>Value (Variable-length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMC-REQ_Message_Format()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Management Message Type = (? 70)</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>_Transaction ID</td>
<td>16 bits</td>
<td></td>
</tr>
<tr>
<td>_N_Report_Control</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>_For (i=0; i< N_Report_Control; i++)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Basic_CID</td>
<td>16 bits</td>
<td></td>
</tr>
<tr>
<td>_Report control mode</td>
<td>2 bit</td>
<td>0b00: Report now</td>
</tr>
</tbody>
</table>
An RS shall generate RMC-REQ messages in the form shown in Table bbb, including the following parameters:

- **CID** (in the generic MAC header)
 - RS’s Basic CID
- **Transaction ID**
 - Unique identifier for this transaction assigned by the sender

The following parameters shall be included in the RMC-REQ message:

- **N_Report_Control**
 - The number of report controls that the MMR-BS forces the RS to report as indicated.
- **Basic CID**
 - Basic CID allocated to the MS.
- **Report control mode**
 - Action code for a RS’s report on measurements of received signal from the MS.
 - 0b00: The RS sends the RM-RPT message with the measurement of the MS immediately.
 - 0b01: The RS sends the RM-RPT message with the measurement of the MS periodically.
 - 0b10: The RS terminates periodic report operation of the MS.
 - 0b11: When the MS is removed in the BS, the BS forces the RS to remove the MS from the MS list of channel measurement.

According to “Report control mode” that the BS indicates, the RMC-REQ message includes the followings:

- **Report Duration**
 - The RS reports periodically the measurements of the signal from the MS in the time described by Duration. If Duration
is set to zero, the time duration is not specified and the RS shall report periodically until terminating periodic reports by receiving the RMC-REQ message of either “Aborting periodic reports” or “Delete”.

Report Period

The period of RS’s report when the RS is required to report the measurements for received signal from the MS periodically.

The RMC-REQ message shall contain the following:

HMAC Tuple (see 11.1.2)

The HMAC Tuple attribute contains a keyed message digest (to authenticate the sender). The HMAC Tuple attribute shall be the final attribute in this message’s attribute list.

6.3.2.3.64 RS Measurement Control Response (RMC-RSP) message

The RS shall send the RMC-RSP message in response to a received RMC-REQ message.

Table ccc- RMC-RSP format

<table>
<thead>
<tr>
<th>Name</th>
<th>Length</th>
<th>Value (Variable-length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMC-RSP_Message_Format() {}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Management Message Type = (? 70)</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>_Transaction ID</td>
<td>16 bits</td>
<td></td>
</tr>
<tr>
<td>_Confirmation Code</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>_TLV Encoding Information</td>
<td>variable</td>
<td>TLV specific</td>
</tr>
</tbody>
</table>

An RS shall generate RMC-RSP messages in the form shown in Table ccc, including the following parameters:

CID (in the generic MAC header)

RS’s Basic CID,

Transaction ID

Transaction ID from corresponding RMC-REQ message,

Confirmation Code

The appropriate Confirmation Code (CC) for the corresponding RMC-REQ message.

The RMC-RSP message shall contain the following:

HMAC Tuple (see 11.1.2)

The HMAC Tuple attribute contains a keyed message digest (to authenticate the sender). The HMAC Tuple attribute shall be the final attribute in this message’s attribute list.

[Insert the following entries into table 353-UCD PHY-specific channel encodings-WirelessMAN-OFDMA:]
<table>
<thead>
<tr>
<th>RS measurement information maintain time</th>
<th>2</th>
<th>Maximum time, in units of seconds, in which the RS maintains the source information without measuring any received signal from the source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS measurement report thresholds</td>
<td>Variable</td>
<td>This is a list of signed integer numbers, where each number is encoded by one byte. The values are sorted in increasing order. The number encoded by each byte represents the signed threshold value in normalized C/N of received signal, in units of 0.5dB. The RS can start to report the measurement of the MS only when the received signal is greater than the first threshold.</td>
</tr>
</tbody>
</table>

Insert the text after 6.3.25:

6.3.25.1 **MS channel measurement triggered by MAP for transparent RS**

The RS shall receive the MAP message which includes all the resource allocations to the MSs. All the received signals of uplink unicast data sent by the MSs shall be measured according to the information about uplink resource allocations. The RS shall maintain the information about MSs including the measured values on the radio channels and the history of measurement reports during a interval. When the measurement value of the MS is in the different range compared to the range at previous report of the MS, the RS shall send the RM-RPT message to the MMR-BS and inform of the change of the range so that the MMR-BS uses this updated channel information. The thresholds describing the ranges of measurement value are specified by “RS measurement report thresholds”, which is to minimize the number of report events. Figure ??? shows RS’s measurement operation and its report event. The RM-RPT message includes the report element that “Basic CID” and “Threshold index” identify the MS and the range of the measured value, respectively. Additionally, the adjustment information about time, power, and offset frequency may be sent to maintain the communication quality between the RS and the MS.
If the MMR-BS intends to control RS’s measurement of received signals from the selected MS, it sends the RMC-REQ message to the RS and the RMC-RSP message is sent by the RS in response to the RMC-REQ message. For the MS specified by Basic CID, the MMR-BS can get the measured values once or periodically receiving the RM-RPT message.