
Title: Frame Structure for Transparent Relay

Date Submitted: 2007-01-08

Source(s): Jae Hyung Eom, Kyu Ha Lee, Changkyoon Kim, Samsung Thales
San 14, Nongseo-Dong, Giheung-Gu, Yongin, Gyeonggi-Do, Korea 449-712

Byung-Jae Kwak, Su Chang Chae, Young-il Kim
ETRI
161, Gajeong-Dong, Yuseong-Gu, Daejeon, Korea 205-350

Voice: +82-31-280-9975
Fax: +82-31-280-1562
jh.eom@samsung.com

Voice: +82-42-860-6618
Fax: +82-42-861-1966
bjkwak@etri.re.kr

Re: Call for Technical Proposal regarding IEEE Project P802.16j

Abstract: The document contains technical proposals for IEEE P802.16j that provides a frame structure.

Purpose: This is a response to Call for Technical Proposals regarding IEEE Project P802.16j.

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>. 


Frame Structure for Transparent Relay

1. Introduction

This contribution proposes a frame structure to support backward compatible to the frame structure in IEEE Std 802.16.

The following assumptions are made:

- No changes are required for a IEEE802.16e-2005 MS operation;
- It enables efficient and flexible relay link operation by extension of IEEE802.16e-2005 frame structure;
- The impact upon the current IEEE802.16e frame structure is minimized
- The relay link delay is minimized;
- Only centralized scheduler is supported for transparent RS
- Only TDD frame is considered in this contribution

The proposed frame structure has the following advantages:

- It enables RS nodes to relay data between BS and MS for both uplink and downlink, regardless of the number of hops.
- It is transparent frame structure, but it transmits preamble, DL-MAP, and UL-MAP using “amplify and forward” method.
- It supports multi-hop relay.

Frame structure this contribution proposes is an extension of IEEE Std. 802.16 OFDMA TDD frame structure.

2. Proposed Frame Structure

A frame structure in IEEE Std. 802.16 is divided into two subframes for a downlink and a uplink transmission. In this proposal, a frame structure is extended to support a relay link. The proposed frame structure is illustrated in Figure 1.

Based on Figure 1, the frame structure is composed of:

- A downlink subframe, a uplink subframe, a TTG, and a RTG.
- The downlink subframe is composed of preamble, FCH, DL-MAP, UL-MAP, 1-hop region, and multi-hop region.
- In the downlink, the 1-hop region includes the MMR-BS → MS related traffic and the MMR-BS → RS related control and traffic. The multi-hop region includes the RS → MS related traffic and the RS → lower RS related control and traffic.
- The uplink subframe is composed of a ranging subchannel, 1-hop region, and multi-hop region.
• In the uplink, the 1-hop region includes the MS → MMR-BS related traffic and the MS → RS related control and traffic. The multi-hop region includes the MS → RS and the lower RS → RS related control and traffic.

• The boundary between 1-hop region and multi-hop region is logically divided.

• RS related control includes the data to control next hop related traffic and RS related traffic includes the traffic data of next hop.

The RS receives a downlink subframe from the MMR-BS. And then RS retransmits the region ① ~ ③, and MMR-BS to RS region of ④ using “Amplify and Forward” method. Because the size of MAP can vary, MMR-BS to RS region of ④ is retransmitted by RS. Simultaneously RS acquires control information by decoding FCH and DL-MAP and decodes data for MS or lower RS at the region ⑤. In next frame, RS transmits decoded data to MS or lower RS after performing coding and modulation. Therefore it should consider the frame delay, modulation order, code rate, and etc of each hop when BS makes up MAP. Figure 2 shows the example of downlink and uplink transmission using RS.

When RS is connected 3-hop or more, the region ⑤ is divided into slots for each RS. One frame delay occurs every hop. Therefore BS should have control information for each hop and it is needed to limit maximum number of hops.
3. Conclusion
This proposal provides an extension to the existing frame structure defined in IEEE Std. 802.16 and supports a multi-hop relay operation.

4. Proposed Text

+++++++++++++ start text proposal ++++++++++++++++++++++++++++++

[Change subclause 6.3.7.2 as indicated:]

For the case where MR-BS supports multi-hop relay, the downlink and uplink subframe are divided into 1-hop relay region and multi-hop relay region. The related frame structure is defined in the OFDMA PHY specific section.

[Insert a new subclause 8.4.4.7.1.1]

8.4.4.7.1.1 MR-BS frame structure
For the TDD mode, an example of the MR-BS frame structure is shown in Figure xxx.

Each MR-BS frame begins with a preamble followed by an FCH, the DL-MAP, and the UL-MAP. The downlink subframe shall include the 1-hop region and may include the multi-hop region. The uplink subframe may include the 1-hop region and may include the multi-hop region. In each frame, the TTG shall be inserted between the downlink subframe and the uplink subframe. The RTG shall be inserted at the end of each frame.

RS retransmits the region ① ~ ⑦, and MMR-BS to RS region of ⑧ using “Amplify and Forward” method. Simultaneously RS acquires control information by decoding FCH and DL-MAP and decodes data for MS or lower RS at the region ⑧. In next frame, RS transmits decoded data to MS or lower RS after performing coding and modulation. When BS makes up MAP, the frame delay, modulation order, code rate, and etc of each hop is considered.

+++++++++++++ End of text proposal ++++++++++++++++++++++++++++++

Figure xxxx – MR-BS frame structure (transparent mode)
References