2007-04-29

Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16 The Passive Multi-hop Relaying HARQ Mechanism 2007-04-29		
Title			
Date Submitted			
Source(s)	Wei Ni, Kaibin Zhang, Gang Shen, Shan Jin Alcatel-Lucent, Research & Innovation No. 388, Ningqiao Rd., Pudong Jinqiao, Shanghai, P. R. C	Voice: 86-21-50554550 Fax: 86-21-50554554 mailto: wei.a.ni@alcatel-sbell.com.cn	
	Fang Liu, Lan Chen, Xiaoming She, Daqing Gu DoCoMo Beijing Lab 7/F, Raycom Infotech Pack Tower A No.2 Kexueyuan South Rd., Haidian District, Beijing, China	Voice: +86-10-82861501 ex.331 Fax: +86-10-82861506 mailto: {liu, gu}@docomolabs-beijing.com.cn	
	Fujio Watanabe DoCoMo USA Labs 3240 Hillview Avenue, Palo Alto, CA Rakesh Taori, Mi-Sun Do Samsung Advanced Institute of Technology	Voice: 650-496-4726 mail to: watanabe@docomolabs-usa.com Voice: +82-31-280-9635	
	Youngbin Chang, Samsung Electronics 416, Maetan-3dong, Youngtong-gu, Suwon- si, Gyeonggi-do, Korea	Voice: +82-31-270-5519 mailto: yb.chang@samsung.com	
Re:	Response to "Call for Technical Comments and Contributions regarding IEEE Project P802.16j" (IEEE 802.16j-07_007r2)		
Abstract	This document proposes a passive MR HARQ mechanism based on the multi-hop basis. This mechanism is preferable due to its simplicity. Furthermore, the cooperative relay can be implemented with it.		
Purpose	Add the proposed spec changes indicated in this document into the 802.16j Baseline Document (IEEE 802.16j-06/026r2)		
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.		

IEEE C802.16j-07/252r2

Patent	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known		
Policy and			
Procedures	applicant with respect to patents essential for compliance with both mandatory and optional portions of the		
	standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as</mailto:chair@wirelessman.org>		
	possible, in written or electronic form, if patented technology (or technology under patent application) might be		
	incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices .		

2007-04-29

The Passive Multi-hop Relaying HARQ Mechanism

I. Introduction

In multi-hop wireless communication systems with centralized scheduling, the efficiency of HARQ (Hybrid ARQ) mechanism is critical owing to its great impact on the transmission delay and the system capacity. The intention of this proposal is to develop an efficient HARQ retransmission mechanism adapted to relay based 802.16j systems and their certain functions by the collaboration between relay stations (RS) and base stations (MR-BS).

As illustrated in Figure 1, a passive MR HARQ mechanism which is on a multi-hop basis is proposed. This mechanism benefits stable wireless channels greatly and furthermore the design of the RS is relatively simple.

This proposal focuses on mechanisms and procedures, instead of HARQ coding and combining techniques, and both soft combining and Incremental Redundancy (IR) combining are supported. These schemes apply to both uplink and downlink.

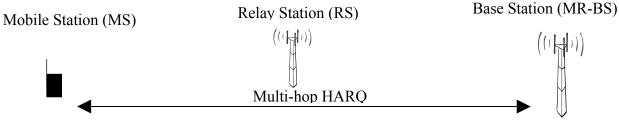


Fig. 1: The multi-hop HARQ in multi-hop relaying networks

II. System Description

If CRC is failed at the RS for the initial transmission, the multi-hop HARQ is performed between the source and the destination until the packet after combining at the RS is correct. Otherwise, the multi-hop HARQ is employed between the RS and destination to recover the original data. ACK/NACK message is only initiated by destination. For the downlink HARQ attempts, the RS is responsible to forward 'ACK/NACK' through the fast feedback channel in the corresponding uplink. For the uplink HARQ attempts, the RS is expected to forward or invert the NACK to ACK in HARQ_ACK_Bitmap_IE in accordance with its corresponding uplink CRC verification for the purpose of radio resource saving without additional messages. A 2-hop example of the passive MR HARQ is illustrated in Figure 2.

For the initial transmission of HARQ, the RS forwards the received data to the next station (RS, BS or MS). As shown in Figure 2, when HARQ retransmission is received by the RS, it is then combined with the previous receptions. This procedure continues until the final destination correctly receives the packet or the maximum allowed retransmission number is reached.

An additional indication (explicit or implicit) is appended with the erroneous data to claim that the data is in error. There are several ways to embed the information which indicates to the next destination (or the next hop station) that the data being relayed is in error.

As a multi-hop HARQ mechanism, the MR-BS keeps requesting the MS to perform HARQ retransmission until its correct reception. The additional indication then is applied to avoid the waste of radio resources by denoting the first hop receiving the erroneous HARQ attempt. However, no extra message is required in this mechanism to inform the MR-BS of the statuses of all intermediate nodes.

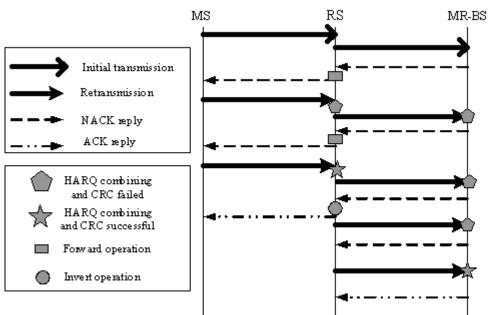


Fig.2 (a): The passive MR HARQ mechanism for the uplink HARQ bursts

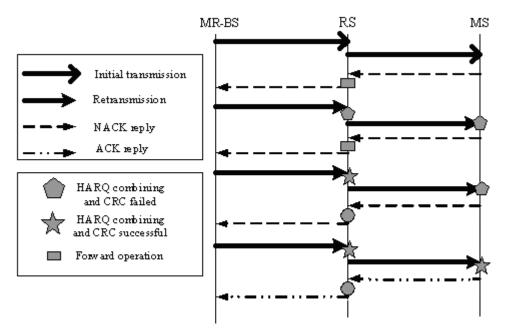


Fig.2 (b): The passive MR HARQ mechanism for the downlink HARQ bursts

III. Summary

The passive MR HARQ is proposed for simplicity and can be used in the stable environments. In addition, cooperative relaying can be implemented with this mechanism. Either Chase combining or (IR) combining is supported.

IV. Proposed Text Changes

6.3.2.3 MAC Management messages

2007-04-29 [*Change 6.3.2.3.43.4 as indicated*]

Two kinds of HARQ control IE are located in DL/UL MAP_IE. One is HARQ_Control_IE for MS and the other is MR_HARQ_Control_IE for RS. Both formats include encoding/decoding information for HARQ enabled DL/UL bursts, and are presented in the MAC frame.

In MR_HARQ_Control_IE, two HARQ mechanisms, active Multi-hop Relaying (MR) HARQ and passive MR HARQ, are alternative under the indication of Syntax "MHH".

[Insert Table 94b as indicated (note that the original Table 94 is changed to be Table 94a)]

Syntax	Size	Notes
HARQ_Control_IE()		
Prefix	1 bit	0 = Temporary disable MR HARQ
		1 = enable MR HARQ
If (Prefix == 1) {		
AI_SN	1 bit	HARQ ID Seq. No
SPID/Reserved	2 bits	Subpacket ID when IR is defined by the FEC mode, otherwise reserved (encoded 0b00)
ACID	4 bits	HARQ CH ID
МНН	1 bit	0 = active MR HARQ is enabled
		1 = passive MR HARQ is enabled
Reserved	3 bits	Shall be set to zero
} else {		
Reserved	3 bits	Shall be set to zero
}		
}		

Table 94b MR_HARQ_Control_IE format

MHH

Indicates which multi-hop HARQ is used, passive MR HARQ or active MR HARQ (which is an alternative multi-hop mechanism for high mobility environments)

[Insert new sub-clause 6.3.17.4 as follows]

Section 6.3.17.4 HARQ mechanism in multi-hop 802.16j networks

The stop-and-wait protocol is exploited for HARQ. Two complementary HARQ mechanisms, the active MR HARQ and the passive MR HARQ, are used on the distinct purposes, but they are compatible to each other in both transparent and non-transparent relays.

[Insert new sub-clause 6.3.17.4.2 and add figures]

2007-04-29 Section 6.3.17.4.2 Passive MR HARQ mechanism

The passive MR HARQ is a multi-hop mechanism in which the forward is performed at the RS no matter whether the correct packet is received or not in the intermediate RS. Both the transparent and non-transparent relay can be supported by this passive MR HARQ mechanism.

The principle and process of the passive MR HARQ is illustrated in Figure 130jc.



Figure 130jc (a): The passive MR HARQ mechanism for the uplink HARQ bursts

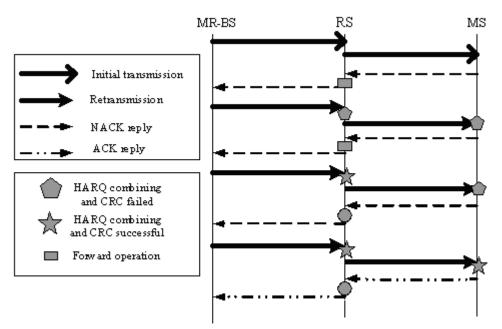


Figure 130jc (b): The passive MR HARQ mechanism for the downlink HARQ bursts

In both uplink and downlink, the source transmits its packets to the RS. The RS forwards the packet to the destination. ACK is sent back to the source via hops from the destination after a fixed delay defined by HARQ_ACK_Delay for UL or DL burst which is specified in DCD message, if the received packet succeeds in the CRC verification. Otherwise, NACK signal is transmitted. The intermediate RSs simply forward the

2007-04-29 ACK/NACK replies.

Only when a NACK is received for the previous HARQ attempt or an ACK is not received properly, a retransmission is conducted by the source. The intermediate RS performs CRC verification and may perform HARQ combining. If an RS performs HARQ combining and the corresponding combined HARQ burst passes the CRC verification, the RS sends an ACK signal to the source and the RS may play the role of the source in the following HARQ retransmission. If the CRC verification fails, the RS may forward the erroneous burst to the next hop. When forwarding an erroneous HARQ burst, regardless of the MCS level used for forwarding, the RS shall indicate to the next hop station that the HARQ burst is in error.