Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title Management CID allocation

Date Submitted 2007-05-08-05

Source(s)
Kenji Saito, Takashi Inoue
KDDI R&D Laboratories Inc. Corporation
3-10-10, Iidabashi, Chiyoda-ku, Tokyo
102-8460 Japan

Hikarino oka 7-1, Yokosuka, Kanagawa 239-0847, Japan

Voice: +81 46 847 634780 5061
Fax: +81 46 847 0947

kenjisaito@kddilabs.jp@kddi.com

Sungjin Lee, Hyunjeong Kang, HyoungKyu Lim
Samsung Electronics

Voice: +82 31 279 5248
Fax: +82 31 279 5130

steve.lee@samsung.com

Mohsin Mollah, Masahito Asa
Motorola Japan Ltd
3-20-1, Minami-Azabu,
Minato-ku Tokyo 106-8573 Japan

Voice: +81 3 5424 3209
mohsin@motorola.com

Aik Chindapol
Jimmy Chui
Hui Zeng
Siemens Corporate Research
Princeton, NJ, 08540, USA

Teck Hu
Siemens Networks
Boca Raton, FL 33431, USA

Yuan-Ying Hsu
Telcordia Applied Research Center Taiwan Co.,
Taipei, Taiwan

yyhsu@tarc-tw.research.telcordia.com

Jen-Shun Yang, Tzu-Ming Lin, Wern-Ho Sheen,
Fang-Ching Ren, Chie Ming Chou, I-Kang Fu
Industrial Technology Research Institute (ITRI)/
National Chiao Tung University (NCTU), Taiwan
195,Sec. 4, Chung Hsing Rd.
Chutung, Hsinchu, Taiwan 310, R.O.C.

jyang@itri.org.tw

Masato Okuda
Fujitsu Laboratories Ltd.
Kamikodanaka 4-1-1,
Kawasaki, 211-8588, Japan

Voice: +81-44-754-2811
Fax: +81-44-754-2786
okuda@jp.fujitsu.com

Yuefeng Zhou
Fujitsu Laboratories of Europe Ltd
Hayes Park Central, Hayes End Road, Hayes,

Voice: +44 (0) 20 8573 4444
Fax: +44 (0) 20 8606 4539
Abstract
This document proposes how to assign Management CID to RS and relayed MS.

Purpose
Discuss and adapt proposed text and message format.

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Management CID allocation

Introduction
This contribution proposes a method of management CID assignment for mobile station (MS) through an RS in a mobile multihop relay (MMR) network.

Background
Figure 1 shows reference model of IEEE802.16j.

![Reference Model of Network Entry for IEEE802.16j](image)

Base station (MR-BS) and mobile station (MS) communicate through one or more relay stations (RSs). All RSs are assumed to transmit preamble and control messages.

In a simple RS case, RS only forwards messages and data with no processing. It is expected that many messages are exchanged between MR-BS and MS via RSs especially in during network entry process. One method to reduce the round-trip time of the message transmission between MR-BS and MS is pre-assignment allocation of management CIDs to an access RS. By using the CID pre-assignment allocation, some message exchanges can be done exchanged between the access RS and MS without going back to BS.

Proposed method
As an optional operation, we propose to pre-assign allocation of CIDs to RSs. MR-BS can assign multiple management CIDs to RS during RS initial ranging process by using RNG-REQ/RSP/CID-ALLOC-REQ/RSP messages. If management CID number is random, all the 16 bits CID numbers should be informed. It results in a long management message. To reduce the message length, consecutive CID number can be used. In that case, only two 16 bits CIDs of the first and last CID numbers are enough to be exchanged.

Additionally, systematic range assignment of RSs may provide further benefit. Systematic range assignment means each superordinate RS has a range as the superset of the union of CIDs of all its subordinate RSs. Systematical CID allocation could embed network topology into CIDs to help RSs to find routing paths without storing all CIDs of subordinate RSs in the routing table. The management CID may be divided into two ranges; one is for MS and other one is for RS.

RS also can assign these CIDs or CID range to its subordinate node (MS or RS) on behalf of superordinate node (MR-BS or RS) during ranging network entry process or at any time whenever needed. In this process, although the management CIDs are assigned by RS, the MR-BS can manage the CID allocation. Because the RS notifies its superordinate node the information of the CID that the RS has
assigned to the MS, Example of these sequences is shown in figure 2. Since the number of these sequence is \(2^{\text{n hops}} \times \text{number of MS}\), this method contributes to effective use of network resource.
CID Assignment

CID pool for subordinate RSs
CID pool for subordinate MSs

Other Network Entry Procedures

CID pool for subordinate RSs
CID pool for subordinate MSs

Other Network Entry Procedures

MR-BS
RS
MS

RNG-REQ
RNG-RSP

UL-MAP
CDMA Ranging Code
RNG-RSP
UL-MAP
CDMA Ranging Code
RNG-REQ

STA-INFO
(Basic & Primary CID)

STA-ACK

P80216j-06_026r3 (p.63) that is 16j Baseline document

C80216j-07_241r5 (p.12) that is accepted in Orlando meeting

CID Alloc-IND
Text to be inserted into standard

6.3.2.3 MAC management messages
6.3.2.3.5 Ranging request (RNG-REQ) message

Insert the following text at the end of the 6.3.2.3.5:

The following TLV parameter shall be included in the RNG-REQ message when transmitted during RS initial entry to the network. Conventional MS ignores the parameter.

- Requested number of management CID for MS
- Requested number of management CID for RS

6.3.2.3.6 Ranging response (RNG-RSP) message

Insert the following text at the end of the 6.3.2.3.6:

Figure 2 Management CIDs allocation and assignment
The following TLV parameter shall be included in the RNG-RSP message when transmitted during RS initial entry to the network. The MR-BS could assign the range of RSs and MSs systematically or non-systematically. Conventional MS ignores the parameter.

--- CID allocation method
--- Range of management CID for MS
--- Range of management CID for RS

Insert new subclause 6.3.2.3.65 through 6.3.2.3.68:

6.3.2.3.XX.65 RS CID Allocation Request (CID_ALLOC-REQ) message

The CID_ALLOC-REQ message shall be transmitted by an RS at any time to make request for pre-allocation of primary and basic CIDs for subordinate RSs and MSs. The message format is shown in Table XX.
Table XX CID_ALLOC-REQ message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID_ALLOC-REQ_Message_Format()</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Management Message Type (TBD)</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>N_Code</td>
<td>16 bits</td>
<td>Number of primary and basic-CIDs requested</td>
</tr>
<tr>
<td>STA_IND</td>
<td>1 bits</td>
<td>To identify the request for subordinate MS or RS 0: MS 1: RS</td>
</tr>
</tbody>
</table>

Basic CID (in the MAC header)
The CID in the MAC header is the Basic CID for this RS, as assigned in the RNG-RSP message.

6.3.2.3. XX 66 RS CID Allocation Response (CID_ALLOC-RSP) message

The CID_ALLOC-RSP message shall be transmitted by the MMR-BS in response to the CID_ALLOC-REQ message from RS or at any time to pre-allocate primary and basic CIDs for MS. MMR-BS shall transmit the same message to an RS to de-allocate primary and basic CIDs previously allocated to an RS.
The message format is shown in Table XX.

Table XX CID_ALLOC-RSP message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID_ALLOC-RSP_Message_Format()</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Management Message Type (TBD)</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Alloc_IND</td>
<td>1 bit</td>
<td>1 = Allocation 0 = De-allocation</td>
</tr>
<tr>
<td>CID_Alloc_method</td>
<td>3 bits</td>
<td>0 = contiguous method 1 = bit partition method 12-7 = reserved</td>
</tr>
</tbody>
</table>

- If (Alloc_IND = 1) {
 - If (CID_Alloc_method = 0) {
 - Start | 16 bits | Starting point of the CID-number |
 - N_Code | 16 bits | Total number of CIDs allocated for basic and primary CIDs |
 } |
- Else if (Alloc_IND = 0) {
 - If (CID_Alloc_method = 0) {
 - Start | 16 bits | Starting point of the CID-number |
 - N_Code | 16 bits | Total number of CIDs de-allocated |
 } |
} |
The CID in the MAC header is the Basic CID for this RS, as appears in the CID_ALLOC-REQ message.

6.3.2.3. STA-INFO message

The STA-INFO message shall be transmitted by the RS to identify a new station (MS or RS) is ready to enter to the network. RS shall include MS’s information along with assigned primary and basic CIDs. The message format is shown in Table XX.

Table XX: STA_INFO message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA-INFO_Message_Format() {}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type (TBD)</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>MAC ID</td>
<td>48 bit</td>
<td>Station’s MAC address</td>
</tr>
<tr>
<td>Primary management CID</td>
<td>16 bits</td>
<td>Primary management CID assigned from RS to the network entering station (MS/RS)</td>
</tr>
<tr>
<td>Basic CID</td>
<td>16 bits</td>
<td>Basic CID assigned from RS to the station (MS/RS)</td>
</tr>
<tr>
<td>Message number</td>
<td>4 bits</td>
<td>Message identification number in case of multiple messages</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV Encoded Information</td>
<td>variable</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The CID in the MAC header is the Basic CID for this RS, as assigned in the RNG-RSP message.

6.3.2.3. STA-ACK message

The STA-ACK message shall be transmitted in response to STA-INFO by the MR-BS to notify the RS that new station’s (MS/RS) information is received successfully. The message format is shown in Table XX.

Table XX STA-ACK message format

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA-ACK_Message_Format() {}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Message Type (TBD)</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Message number</td>
<td>4 bits</td>
<td>Message identification number in case of multiple messages</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV Encoded Information</td>
<td>variable</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The CID in the MAC header is the Basic CID for this RS, as appears in the STA-INFO message.

6.3.9 Network entry and initialization
6.3.9.16 Support for network entry
6.3.9.16.1 MS network entry procedures in transparent RS systems
6.3.9.16.2 MS network entry procedures in non-transparent RS systems
6.3.9.16.3 RS network entry procedures in transparent RS systems
6.3.9.16.4 RS network entry procedures in non-transparent RS systems

Insert new subclause 6.3.9.16.5:

6.3.9.16.5 Optional network entry procedure with localized RS

6.3.9.16.5.1 CID pre-assignment during RS network entry procedure

This RS network entry process is almost same as described in 6.3.9.16.2.1, except that the MR-BS or RS assigns the CID to its subordinate nodes.

The MR-BS may assign a part of management CID range systematically or non-systematically to its subordinate RS during ranging process or by using CID Alloc-IND LOC-REQ/RSP messages at any time whenever needed. Systematic range assignment means each superordinate RS has a range as the superset of the union of CIDs of all its subordinate RSs. Systematical CID allocation could embed network topology into CIDs to help RSs to find routing paths without storing all CIDs of subordinate RSs in the routing table.
Figure xxx Ranging and automatic adjustments procedure with optional availability check at RS in MR-MR-mode

6.3.9.16.5.2 MS network entry procedure for localized non-transparent RS

This MS network entry process is almost same as described in 6.3.9.16.2.1, except that RS is assigned range of management CIDs by its super-ordinate node in advance. This section states that the RS may assign the management CIDs to its subordinate nodes (MS or RS) during initial ranging process. RS may pre-allocate CID range to subordinate RS using CID_ALLOC_REQ_RSPALLOC-IND messages on behalf of the MR-BS during the ranging process of these nodes or at any time whenever needed.
When the time & power correction is finished between RS and MS, and the RS receives the RNG-REQ containing MS MAC address, the RS may reply the RNG-RSP containing the management CID that is assigned by the RS. In addition, the RS may inform the BS that a new station (MS or RS) is ready to enter to the network using STA-INFO/ACK message.

After assigning the basic and primary management CID to a MS, the MS and MR-BS continue network entry process as described in the 6.3.9.7 through 6.3.9.13 using MS’s management CIDs. The RS shall relay management messages between them.

Figure xxx Ranging and automatic adjustments procedure with optional availability check at RS in MR mode
11.5 RNG-REQ message encodings

Insert the following entries into Table 364:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type (1-byte)</th>
<th>Length</th>
<th>Value (variable-length)</th>
<th>PHY Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested number of management CID for MS</td>
<td>xx</td>
<td>1</td>
<td>The number of management CID for subordinate MS</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Requested number of management CID for RS</td>
<td>xx</td>
<td>1</td>
<td>The number of management CID for subordinate RS</td>
<td>OFDMA</td>
</tr>
</tbody>
</table>

11.6 RNG-RSP management message encodings

Insert the following entries into Table 367:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type (1-byte)</th>
<th>Length</th>
<th>Value (variable-length)</th>
<th>PHY Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID allocation method</td>
<td>xx</td>
<td>1</td>
<td>Used to indicate the CID allocation method of RSs 0: contiguous method</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Range of management CID for RS</td>
<td>xx</td>
<td>4</td>
<td>IF CID range allocation method==0: Byte#0-1: start number of CID Byte#2-3: number of CIDs</td>
<td>OFDMA</td>
</tr>
<tr>
<td>Range of management CID for MS</td>
<td>xx</td>
<td>4</td>
<td>Byte#0-1: start number of CID Byte#2-3: number of CIDs</td>
<td>OFDMA</td>
</tr>
</tbody>
</table>

Reference

[1] IEEE C802.16j-06/154, “Network entry procedure for MS in 802.16j”