| Project                              | IEEE 802.16 Broadband Wireless Access Working Group < <u>http://ieee802.org/16</u> >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Title                                | Tunnel Establishment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Date Subm<br>itted                   | 2007-03-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Source(s)                            | Changkyoon Kim, Hyung Kee Kim, Mi-kyoung Lee,<br>Young-jae Kim, Kyu Ha Lee<br>Samsung Thales Co., Ltd<br>San 12-1, Nongseo-Dong, Giheung-Gu,<br>Yongin-City, Gyeonggi-Do, Korea 446-712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Voice: +82-31-280-9919<br>Fax: +82-31-280-1620<br>E-mail: changkyoon.kim@samsung.com<br>E-mail: kyuha.lee@samsung.com                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                      | Sunggeun Jin, Young Jin Moon, Young-il Kim<br>ETRI<br>161, Gajeong-Dong, Yuseong-Gu, Daejeon,<br>Korea 205-350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Voice : +82-42-860-1757<br>Fax: +82-42-861-1966<br>E-mail: sgjin@etri.re.kr                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Re:                                  | This is a response to Call for Technical Proposals issued by IEEE 802.16j.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Abstract                             | We suggest the procedure of tunnel establishment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Purpose                              | The objective of this contribution is to propose the procedure of tunnel establishment in MMR s ystem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Notice                               | This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and con tent after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Release                              | The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name an y IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discr etion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor als o acknowledges and accepts that this contribution may be made public by IEEE 802.16.                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Patent Poli<br>cy and Proc<br>edures | The contributor is familiar with the IEEE 802.16 Pate<br>rg/16/ipr/patents/policy.html>, including the statement<br>use of patent(s), including patent applications, provid-<br>tent holder or applicant with respect to patents essent<br>optional portions of the standard." Early disclosure to<br>that might be relevant to the standard is essential to re-<br>opment process and increase the likelihood that the dr<br>ation. Please notify the Chair <mailto:chair@wireless<br>electronic form, if patented technology (or technolog<br/>orated into a draft standard being developed within th<br/>will disclose this notification via the IEEE 802.16 we<br/>ices&gt;.</mailto:chair@wireless<br> | at "IEEE standards may include the known<br>ed the IEEE receives assurance from the pa<br>tal for compliance with both mandatory and<br>to the Working Group of patent information<br>educe the possibility for delays in the devel<br>caft publication will be approved for public<br>sman.org> as early as possible, in written or<br>y under patent application) might be incorp<br>e IEEE 802.16 Working Group. The Chair |  |  |  |  |

# **Tunnel Establishment**

Changkyoon Kim, Hyung Kee Kim, Mi-kyoung Lee, Young-jae Kim, Kyu Ha Lee Samsung Thales Sunggeun Jin, Young Jin Moon, Young-il Kim ETRI

### Introduction

In MMR system as depicted in figure 1, there exists multiple and multi-hop path between an MR-BS and an M S [1].

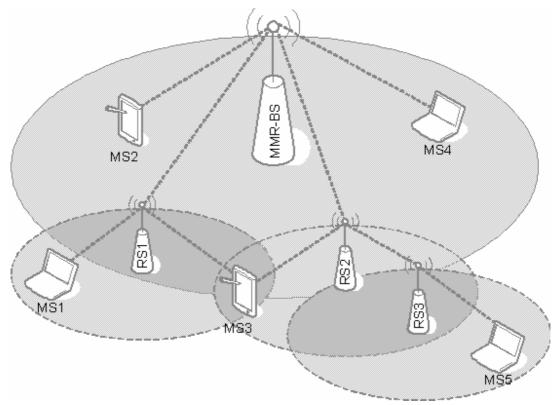



Figure 1 MMR System

So it is important to decide the suitable path from the MR-BS to the MS. For this purpose, the MR-BS and RS s have to maintain and manage the path information.

There exist several path management methods, but tunneling is more efficient method than others.

In general path management, when the MS moves from one RS to another, the MR-BS, intermediate RS(s) and access RS have to update the path information related to the MS.

In the tunneling, intermediate and access RSs would not change any path information, but the only MR-BS sel ects other tunnel toward access RS connected with moved MS.

For tunneling, we propose the way to establish tunnels by using encapsulation.

Herein we define the tunnel as the direct path between the MR-BS and the access RS, and the basic CID of the access RS is used to identify the specific tunnel.

In our method, the encapsulated RNG, DSx and DREG messages is used to establish a tunnel, and all traffic be tween the MR-BS and the MS is encapsulated with the basic CID of the access RS.

This method is suitable only to a fixed RS. But, after declaring the procedure of RS movement detection, our method would be extended to support moving RS.

We are not interested in how intermediate RS(s) relay a ranging code and its response (first RNG-RSP). But, we are just interested in how intermediate RS(s) relay an RNG-REQ and its response (second RNG-RSP) and e stablish a tunnel and a look-up table.

We use two initial ranging CID, one is for the MS and another is for the RS. And we suggest the initial rangin g CID for RS is set to 0x0001, but the specific value is not fixed.

The first case is 1-hop RS initial ranging.




Figure 2 The procedure of 1-hop RS initial ranging

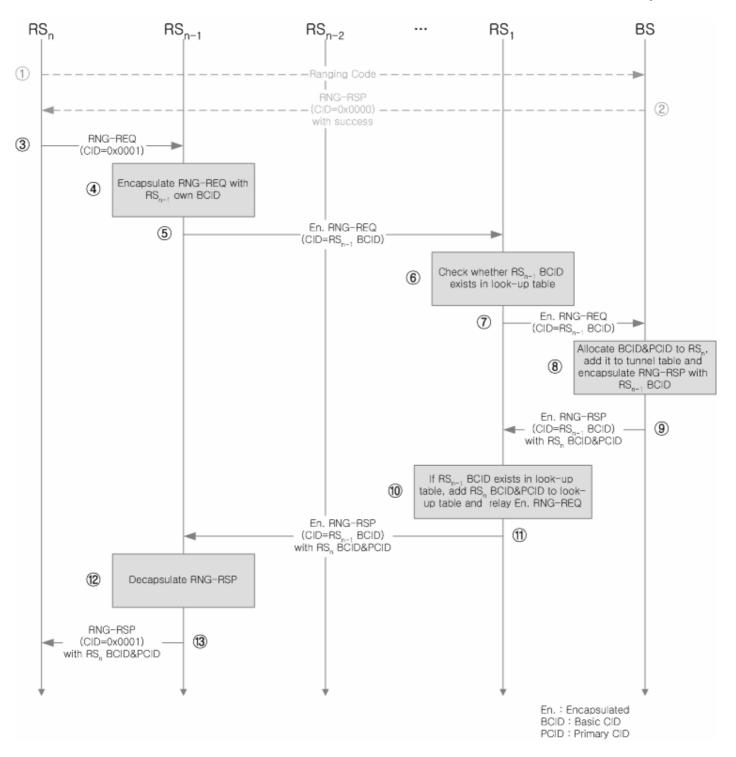
The RS transmits an initial ranging code.

The BS sends an RNG-RSP (CID=0x0000) with status=success.

• If BS can distinguish the RS from the MS at this time, CID should be set to 0x0001.

The RS sends an RNG-REQ (CID=0x0001).

The BS allocates a basic and a primary CID to an RS and adds it to tunnel table.


The BS sends an RNG-RSP (CID=0x0001) with an RS basic and primary CID.

| Destination (CID) | Tunnel (CID) |
|-------------------|--------------|
| RS BCID           | -            |
| RS PCID           | -            |

## Table 1 MR-BS tunnel table (The case of 1-hop RS)

After the initial ranging of 1-hop RS is finished, Table 1 is made by the MR-BS

The second case is multi-hop RS initial ranging.



#### Figure 3 The procedure of multi-hop MS/RS initial ranging

The  $RS_n$  transmits an initial ranging code.

- The BS sends an RNG-RSP (CID=0x0000) with status=success.
- If BS can distinguish the RS from the MS at this time, CID should be set to 0x0001.
- The  $RS_n$  sends an RNG-REQ (CID=0x0001).

The RS<sub>n-1</sub> encapsulates an RNG-REQ with its own basic CID.

The  $RS_{n-1}$  sends an encapsulated RNG-REQ (CID=  $RS_{n-1}$  BCID).

Intermediate RSs check whether an RS<sub>n-1</sub> BCID exists in a look-up table.

Intermediate RSs relay an encapsulated RNG-REQ (CID=  $RS_{n-1}$  BCID).

The BS allocates a basic and a primary CID to MS/RS  $_n$ , adds it to tunnel table and encapsulates an RN G-RSP with an RS $_{n-1}$  BCID.

The BS sends an encapsulated RNG-RSP (CID=RS<sub>n-1</sub> BCID) with an RS<sub>n</sub> basic and primary CID.

If RS<sub>n-1</sub> BCID exists in a look-up table, intermediate RSs add an RS<sub>n</sub> basic and primary CID to look-up table.

Intermediate RSs send an encapsulated RNG-RSP (CID=RS<sub>n-1</sub> BCID) to next node.

The  $RS_{n-1}$  decapsulates an encapsulated RNG-RSP (CID= $RS_{n-1}$  BCID).

The RS<sub>n-1</sub> sends an RNG-RSP (CID=0x0001) to the RS<sub>n</sub>.

| Destination (CID)    | Tunnel (CID)           |
|----------------------|------------------------|
| RS <sub>1</sub> BCID | -                      |
| RS <sub>1</sub> PCID | -                      |
| RS <sub>2</sub> BCID | RS <sub>1</sub> BCID   |
| RS <sub>2</sub> PCID | RS <sub>1</sub> BCID   |
|                      |                        |
| RS <sub>n</sub> BCID | RS <sub>n-1</sub> BCID |
| RS <sub>n</sub> PCID | RS <sub>n-1</sub> BCID |

Table 2 MR-BS tunnel table (The case of multi-hop RS)

Table 3 RS<sub>1</sub> tunnel table (The case of multi-hop RS)

| Destination (CID)    | Tunnel (CID)           |
|----------------------|------------------------|
| RS <sub>2</sub> BCID | -                      |
| RS <sub>2</sub> PCID | _                      |
|                      |                        |
| RS <sub>n</sub> BCID | RS <sub>n-1</sub> BCID |
| RS <sub>n</sub> PCID | RS <sub>n-1</sub> BCID |

Table 4 RS<sub>n-1</sub> tunnel table (The case of multi-hop RS)

| Destination (CID)    | Tunnel (CID) |
|----------------------|--------------|
| RS <sub>n</sub> BCID | _            |
| RS <sub>n</sub> PCID | -            |

After the initial ranging of multi-hop RS, Table 2 is updated by the MR-BS, the look-up table like Table 3 or T able 4 is updated by intermediate RSs.

The third case is the service flow addition.

IEEE C802.16j-07/264r2

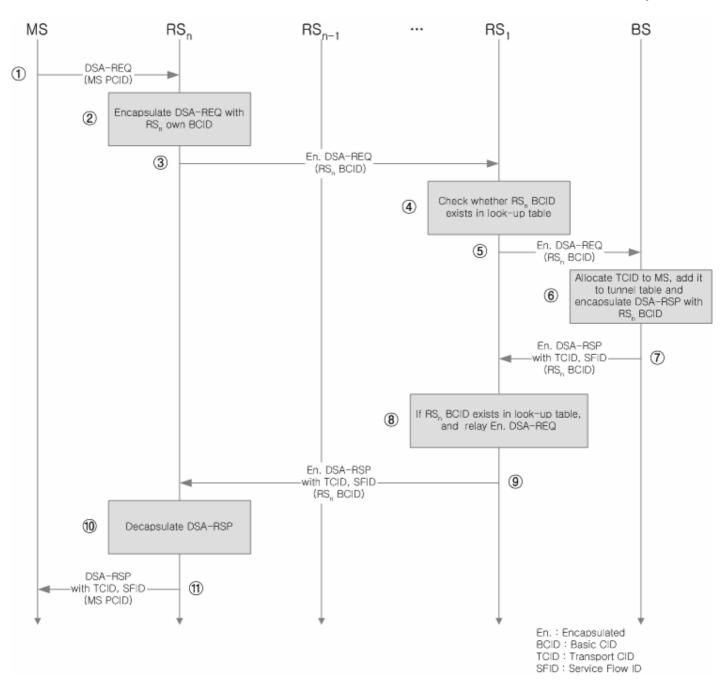



Figure 4 The procedure of multi-hop MS service flow addition

The MS sends a DSA-REQ (CID=MS PCID).

The RS<sub>n</sub> encapsulates a DSA-REQ with its own basic CID.

The RS<sub>n</sub> sends an encapsulated DSA-REQ (CID= RS<sub>n</sub> BCID).

Intermediate RSs check whether an RS<sub>n</sub> BCID exists in a look-up table.

Intermediate RSs relay an encapsulated DSA-REQ (CID=  $RS_n$  BCID).

The BS allocates a transport CID to MS, adds it to tunnel table and encapsulates a DSA-RSP with an R  $S_n$  BCID.

The BS sends an encapsulated DSA-RSP (CID=RS<sub>n</sub> BCID) with an MS transport CID.

Intermediate RSs check whether RS<sub>n</sub> BCID exists in a look-up table.

Intermediate RSs send an encapsulated DSA-RSP (CID=RS<sub>n</sub> BCID) to next node. The RS<sub>n</sub> decapsulates an encapsulated DSA-RSP (CID=MS BCID). The RS<sub>n</sub> sends a DSA-RSP (CID=MS PCID) to the MS.

| Destination (CID)    | Tunnel (CID)         |
|----------------------|----------------------|
| RS <sub>1</sub> BCID | -                    |
| RS <sub>1</sub> PCID | _                    |
| RS <sub>2</sub> BCID | RS <sub>1</sub> BCID |
| RS <sub>2</sub> PCID | RS <sub>1</sub> BCID |
|                      |                      |
| MS BCID              | RS <sub>n</sub> PCID |
| MS PCID              | RS <sub>n</sub> PCID |
| MS TCID              | RS <sub>n</sub> PCID |

Table 5 MR-BS tunnel table (The case of multi-hop MS)

After the service flow addition of MS is finished, Table 5 is updated by the MR-BS.

The fourth case is the service flow deletion.

IEEE C802.16j-07/264r2

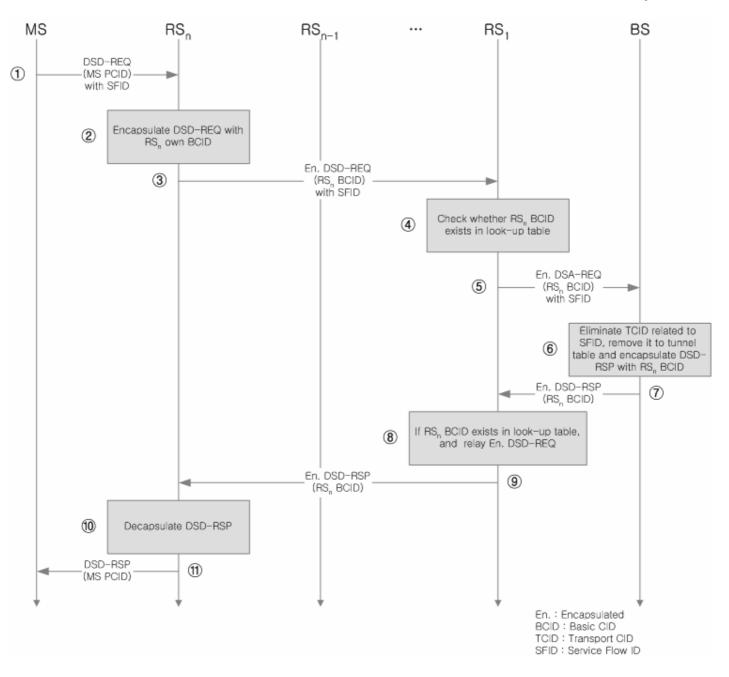



Figure 5 The procedure of multi-hop MS service flow deletion

The MS sends a DSD-REQ (CID=MS PCID) with an SFID.

The  $RS_n$  encapsulates a DSD-REQ with its own basic CID.

The  $RS_n$  sends an encapsulated DSD-REQ (CID=  $RS_n$  BCID).

Intermediate RSs check whether an  $RS_n$  BCID exists in a look-up table.

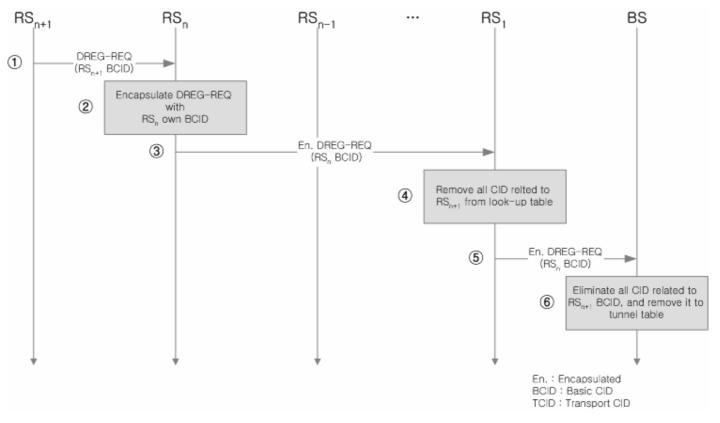
Intermediate RSs relay an encapsulated DSD-REQ (CID=  $RS_n$  BCID).

The BS eliminates a transport CID related to SFID, removes it from tunnel table and encapsulates a DS D-RSP with an  $RS_n$  BCID.

The BS sends an encapsulated DSD-RSP (CID=RS<sub>n</sub> BCID).

Intermediate RSs check whether  $RS_n$  BCID exists in a look-up table.

Intermediate RSs send an encapsulated DSD-RSP (CID=RS $_n$  BCID) to next node.


The  $RS_n$  decapsulates an encapsulated DSD-RSP (CID=MS BCID). The  $RS_n$  sends a DSD-RSP (CID=MS PCID) to the MS.

| Destination (CID)    | Tunnel (CID)         |
|----------------------|----------------------|
| RS <sub>1</sub> BCID | _                    |
| RS <sub>1</sub> PCID | _                    |
| RS <sub>2</sub> BCID | RS <sub>1</sub> BCID |
| RS <sub>2</sub> PCID | RS <sub>1</sub> BCID |
|                      |                      |
| MS BCID              | RS <sub>n</sub> BCID |
| MS PCID              | RS <sub>n</sub> BCID |
| MS TCID              | RS <sub>#</sub> BCID |

| Table 6 MR-BS tunnel table | (The case of multi-hop MS) |
|----------------------------|----------------------------|
|----------------------------|----------------------------|

After the service flow deletion of MS is finished, Table 6 is updated by the MR-BS.

The fifth case is the RS deregistration.



#### Figure 6 The procedure of multi-hop RS deregistration

The  $RS_{n+1}$  sends a DREG-REQ (CID=  $RS_{n+1}$  BCID). The  $RS_n$  encapsulates a DREG-REQ with its own basic CID. The  $RS_n$  sends an encapsulated DREG-REQ (CID=  $RS_n$  BCID).

Intermediate RSs remove all CID related to  $RS_{n+1}$  from the look-up table Intermediate RSs relay an encapsulated DREG-REQ (CID=  $RS_n$  BCID). The BS eliminates all CID related to  $RS_{n+1}$ , and removes it from tunnel table.

|                                  | ,                                                  |
|----------------------------------|----------------------------------------------------|
| Destination (CID)                | Tunnel (CID)                                       |
| $RS_1 BCID$                      | -                                                  |
| RS <sub>1</sub> PCID             | -                                                  |
| RS <sub>2</sub> BCID             | RS <sub>1</sub> BCID                               |
| RS <sub>2</sub> PCID             | RS <sub>1</sub> BCID                               |
|                                  |                                                    |
| <del>RS<sub>n+1</sub> BCID</del> | <del>RS<sub>n</sub> BCID</del>                     |
| RS <sub>n+1</sub> PCID           | RS <sub>#</sub> -BCID                              |
| MS BCID                          | RS <sub>n+1</sub> BCID                             |
| MS PCID                          | RS <sub>n+1</sub> -BCID                            |
| MS BCID<br>MS PCID               | RS <sub>n+1</sub> -BCID<br>RS <sub>n+1</sub> -BCID |

Table 7 MR-BS tunnel table (The case of multi-hop MS)

Table 8 RS<sub>1</sub> tunnel table (The case of multi-hop MS)

| Destination (CID)      | Tunnel (CID)                   |
|------------------------|--------------------------------|
| RS <sub>2</sub> BCID   | _                              |
| RS <sub>2</sub> PCID   | -                              |
|                        |                                |
| RS <sub>n+1</sub> BCID | <del>RS<sub>#</sub> BCID</del> |
| RS <sub>n+1</sub> PCID | RS <sub>#</sub> BCID           |

Table 9 RS<sub>n</sub> tunnel table (The case of multi-hop MS)

| Destination (CID)      | Tunnel (CID) |
|------------------------|--------------|
| RS <sub>n+1</sub> BCID | _            |
| RS <sub>n+1</sub> PCID | _            |

After the deregistration of RS, Table 7 is updated by the MR-BS, and the look-up table like Table 8 or Table 9 is updated by intermediate RSs.

After tunnels are established, all the traffic to the multi-hop MS is relayed through tunnel. In this case, the traff ic is encapsulated with the extended subheader

|                      | V////// |                |      |                |      |                |      |     |     |
|----------------------|---------|----------------|------|----------------|------|----------------|------|-----|-----|
| GMH<br>(CID=RS BCID) | New ESH | GMH<br>(CID=a) | Data | GMH<br>(CID=b) | Data | GMH<br>(CID=c) | Data | PAD | CRC |
|                      | X////// |                |      |                |      |                |      | 1   |     |

Figure 7 the example of encapsulation [2]

# **Proposed Text**

3 Definitions

Insert new terminology as followed:

3.x tunnel : A logically direct path from the MR-BS to the access RS

### 6.3.2.2.7 Extended subheader format

Change Table 13b as indicated:

### Table 13b—Description of extended subheaders types (DL)

| ES type            | Name                                     | ES body size | Description      |
|--------------------|------------------------------------------|--------------|------------------|
| <del>6-127</del> 6 | ReservedEncapsulation Extended Subheader | —2 bytes     | —See 6.3.2.2.7.9 |
| 7-127              | Reserved                                 |              |                  |

6.3.2.2. MAC subheaders and special payloads *Insert new subclause 6.3.2.2.8 at the end of 6.3.2.2:* 

#### 6.3.2.2.8 Encapsulation subheader

Encapsulation subheader is used to establish a tunnel and is added to all traffic through tunnel. This subheader is solely used, so other extended subheader and subheader shall be not followed. The format of the encapsulation n subheader is as described in Table 13m.

| Name                | Size           | Description                                                                                                                                                                                                                                                                                                                      |
|---------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Message Type</u> | <u>2 bytes</u> | Specify the type of message<br>Bit #0 : RNG-REQ<br>Bit #1 : RNG-RSP<br>Bit #2 : DSA-REQ<br>Bit #3 : DSA-RSP<br>Bit #4 : DSA-ACK<br>Bit #5 : DSC-REQ<br>Bit #6 : DSC-RSP<br>Bit #7 : DSC-ACK<br>Bit #8 : DSD-REQ<br>Bit #9 : DSD-RSP<br>Bit #10 : DREG-CMD<br>Bit #11 : DREG-REQ<br>Bit #12 - #14 : Reserved<br>Bit #15 : Traffic |

#### Table 13m—Encapsulation subheader

6.3.25 Relay path management and routing

Insert the following at the end of 6.3.25:

6.3.25.1 Tunnel Establishment

<u>Tunnel is defined as a logically direct path between the MR-BS and the access RS. All traffic to the multi-hop</u> <u>MS passes via tunnel. In the tunnel, all MPDU is encapsulated with the encapsulation extended subheader.</u>

Tunnel is established in the procedure of RS initial ranging and MS service flow addition, and is eliminated in the procedure of RS deregistration and MS service flow deletion.

In the procedure of RS initial ranging, the MR-BS and RSs act as followed:

- New RS transmits an initial ranging code.
- The access RS and intermediate RS(s) relay the code to the MR-BS.
- The MR-BS sends an RNG-RSP with status=success
- Intermediate RS(s) and access RS relay the RNG-RSP to the RS.
- The RS sends an RNG-REQ.
- The access RS encapsulates an RNG-REQ with its own basic CID and sends it to the next node.
- Intermediate RS(s) relays the encapsulated RNG-REQ to the MR-BS.
- <u>The MR-BS allocates a new basic and primary CID to the RS, adds new entry related to the RS to the tun</u> <u>nel table, and sends an encapsulated RNG-RSP with the basic CID of the access RS to the RS.</u>
- Intermediate RS(s) updates its own look-up table and relays the encapsulated RNG-RSP to the access RS.
- Access RS updates its own look-up table, decapsulates the encapsulated RNG-RSP, and sends it to the R S.

In the procedure of RS deregistration, the MR-BS and RSs act as followed:

- The RS sends a DREG-REQ with its own basic CID.
- The access RS eliminates the entry related to the RS from its own look-up table, encapsulates a DREG-R EQ with its own basic CID and sends it to the MR-BS.
- Intermediate RS(s) eliminate the entry related to the RS from its own look-up table, and relay the encaps ulated DREG-REQ to the MR-BS.
- The BS eliminates entries related to the RS from the tunnel table.

In the procedure of MS service flow addition, the node act as followed:

- The MS sends a DSA-REQ with its own basic CID.
- The access RS encapsulates a DSA-REQ with its own basic CID and sends it to the next node.
- Intermediate RS(s) relay the encapsulated DSA-REQ to the MR-BS.

- The BS allocates a new transport CID to the MS, adds new entry related to the MS to the tunnel table and sends an encapsulated DSA-RSP with the basic CID of the access RS to the MS.
- Intermediate RS(s) relay the encapsulated DSA-RSP to the access RS.
- The access RS decapsulates an encapsulated DSA-RSP and sends it to the MS.

In the procedure of MS service flow deletion, nodes act as followed:

- The MS sends a DSD-REQ with its own basic CID and an SFID.
- The access RS encapsulates a DSD-REQ with its own basic CID and sends it to the next node.
- Intermediate RS(s) relays an encapsulated DSD-REQ to the MR-BS.
- <u>The BS eliminates a transport CID related to SFID, removes entries related to the transport CID from tunn</u> el table and sends an encapsulated DSD RSP with the basic CID of the access RS to the MS.
- Intermediate RS(s) relay the encapsulated DSD-RSP to the access RS.
- The access RS decapsulates an encapsulated DSD-RSP and sends it to the MS.

### 10.4 Well-known addresses and identifiers

Change Table 345 as indicated:

#### Table 345—CIDs

| CID                                      | Value               | Description                                                  |
|------------------------------------------|---------------------|--------------------------------------------------------------|
| Initial Ranging <u>for M</u><br><u>S</u> | 0x0000              | Used by MS and BS during initial ranging process.            |
| Initial Ranging for RS                   | <u>0x0001</u>       | Used by RS and BS during initial ranging process.            |
| Basic CID                                | 0x000 <u>+2</u> - m | The same value is assigned to both the DL and UL connection. |

### References

- [1] C. K. Kim, et. Al, "Simple Path Management by Encapsulation in MMR System", IEEE C802.16j-07/168, I EEE 802.16 meeting #47, London, Jauary 2007
- [2] J. Z. Tao, et. Al, "Relay Tunnel Connection for 802.16j", IEEE X802.16j-07/115r3, IEEE 802.16 meeting # 47, London, January 2007