Project	IEEE 802.16 Broadband Wireless Access Working Group
Title	<http: 16="" ieee802.org=""> Drops during MRS/MS handover</http:>
Data	10-April-2007
Submitted	
Source(s)	Tan Huanxi, Liu Qiaoyan Voice:
	Zhao Lu, Yu Qiuxing Fax:
	Li Geng, Gong Yuanyuan Email: <u>tan.huanxi@zte.com.cn</u>
	<u>liu.qiaoyanxa@zte.com.cn</u>
	ZTE Corporation
Dai	JinYe Road, Xi'an, P.R.China 700065 This is a response to Call for Technical Proposals regarding IEEE Project P802.16j.
Re: Abstract	The document contains technical proposals to handle with drops during MRS or MS handover in
Austract	IEEE P802.16j network.
Purpose	The document is submitted for review by 802.16 Working Group members.
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and
	is not binding on the contributing individual(s) or organization(s). The material in this document
	is subject to change in form and content after further study. The contributor(s) reserve(s) the right
	to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in
	this contribution, and any modifications thereof, in the creation of an IEEE Standards
	publication; to copyright in the IEEE's name any IEEE Standards publication even though it may
	include portions of this contribution; and at the IEEE's sole discretion to permit others to
	reproduce in whole or in part the resulting IEEE Standards publication. The contributor also
	acknowledges and accepts that this contribution may be made public by IEEE 802.16
Patent Policy and Procedure s	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures
	< <u>http://ieee802.org/16/ipr/patents/policy.html</u> >, including the statement "IEEE standards may
	include the known use of patent(s), including patent applications, provided the IEEE receives
	assurance from the patent holder or applicant with respect to patents essential for compliance
	with both mandatory and optional portions of the standard. "Early disclosure to the Working
	Group of patent information that might be relevant to the standard is essential to reduce the
	possibility for delays in the development process and increase the likelihood that the draft
	publication will be approved for publication. Please notify the Chair
	<pre><mailto:chiar@wirelessman.org> as early as possible, in written or electronic form, if patented</mailto:chiar@wirelessman.org></pre>
	technology (or technology under patent application) might be incorporated into a draft standard
	being developed within the IEEE 802.16 Working Group. The Chair will disclose this
	notification via the IEEE 802.16 web site < <u>http://ieee802.org/16/ipr/patents/notices</u> >.

Drops during MRS/MS handover

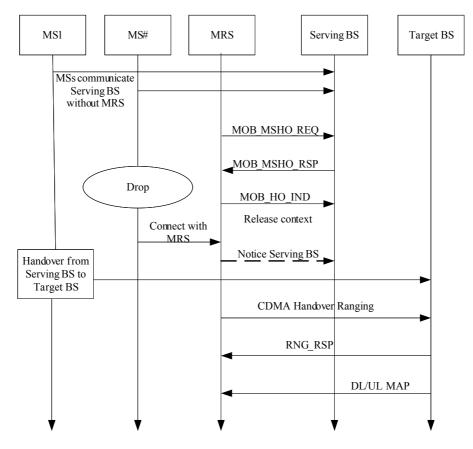
1 Introduction

In IEEE 802.16e, a drop is defined as the situation where an MS has stopped communication with its serving BS before the normal handover sequence. Due to the introduction of relay station in the network, the technique to deal with drops during MS handover defined in IEEE 802.16e should be modified to satisfy RS network, especially the mobile relay station (MRS) condition.

Generally, MRS is installed on the vehicle to provide stable access link to part of MS holding in this mobile carrier. In MRS operation scenario, we consider that both MRS and MSs can receive the signal from current serving BS directly for they are confined in the same vehicle and the distance between BS and MRS is approximately equal to that between BS and MSs, so the main function of MRS is not to increase the system coverage but enhance the system capacity. Based on such assumption, there exist two kinds of MS on the same vehicle:

- 1 MS communicate with BS without MRS;
- 2 MS communicate with BS through MRS.

According to above explanation, two sorts of drops may occur: MS which connects with BS directly drops; MRS drops and then triggers its attached MSs drop consequently. This contribution proposes a method to deal with drops during non-transparent MRS or MS handover on the same vehicle. We will focus on both cases and the former case will be solved different from the available method in IEEE 802.16e.


2 proposed solution

As discussed above, when the vehicle on which the MRS and MSs are mounted moves from one BS to another, the following two sorts of drops are possible during handover:

1 MS which connects with BS directly drops;

2 MRS drops and then triggers its attached MSs drop.

In former case, MS could perform the similar procedures about drops during handover as defined in 6.3.22.2.6. However, the available method is likely to bring annoying time delay because of resuming communication failure and network reentry procedure. Therefore, we propose a method for MS drops to decrease unnecessary delay and to keep the continuity of the calling signal. We assumed that MRS has the ability of transmitting its own control information such as Preamble/FCH/MAP, so the MS which connect with BS directly can monitor MRS' downlink information and perform parameter negotiation and synchronization in advance. Upon MS drops arising, it can communicate with MRS immediately and then the MRS reports corresponding MS information to its serving station.

The following figure illustrates the proposed method for MS drops.

Figure 1: MS drops which connects with BS directly

In latter case, MRS can detect its drop by its failure to demodulate the downlink, and the attached MSs can detect its drops for they cannot receive correct downlink information from its current MRS. As MS which connect with BS directly, the attached MSs can also receive control information from serving BS.

If MRS detects its drop before sending the MAC message MOB_HO_IND, MRS may try to resume communication with current serving station by sending the MAC

message MOB_HO_IND with HO_type=0b01(or 0b10) to cancel(or reject) handover. If MRS detects its drop after sending the MAC message MOB_HO_IND with HO_type=0b00 (resource release), and serving BS does not receive the successful network attachment at target station over backbone, MRS may transmit new MOB_HO_IND with HO_type=0b01 (or 0b10) to cancel (or reject) handover. The old MOB_HO_IND message will be neglected if the new MOB_HO_IND message is received by serving BS before resource-retain-time timer expiration. On the contrary, the new MOB_HO_IND message will be neglected if it is received after resource-retain-time timer expiration. Under such circumstance, MRS still performs handover ranging with its preferred target BS in terms of normal handover operation. During MRS drops interval, the attached MSs connect to current serving BS temporarily.

When serving BS detects a drop, it shall react as if a MOB_HO_IND message has been received with HO_IND_type=0b00, which is similar to IEEE 802.16e. The following procedure may adopt the scheme for the latter case.

The following figure illustrates the proposed method for MRS drops.

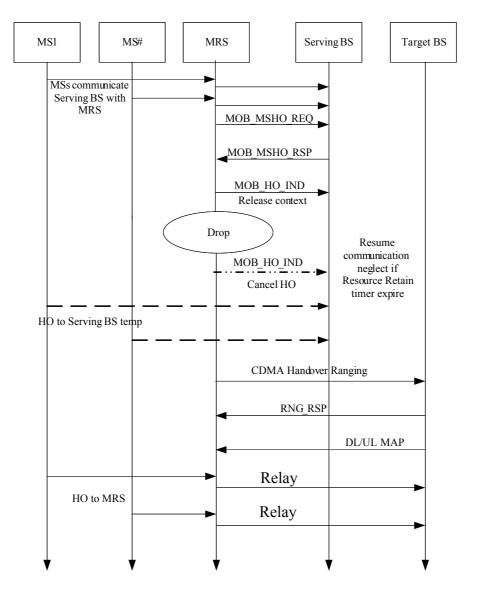


Figure 2: MRS drops then triggers its attached MSs drop

Target BS may send RNG_RSP with 'ranging status'=continue and time, power, frequency adjustment information when MRS is unable to perform handover ranging with its target BS successfully. If MRS cannot establish correct connection with its target BS during network reentry, MRS shall attempt to resume communication with serving BS, and search for appropriate target BS at the same time through cell reselection.

3 Proposed Text Change

[Insert new subclause 6.3.22.4.xx after section 6.3.22.4]

6.3.22.4.xx MS Drops during handover

In MMR network, a MRS moves along with its attached MSs. All MS in the same

vehicle may consist of two parts: MSs which connect with BS directly and MSs which connect with BS through MRS.

MSs which connect with BS directly can detect a drop using the method defined in 6.3.22.2.6. MRS has the ability of transmitting its own control information such as Preamble/FCH/MAP. Those MS can monitor MRS' downlink information and perform parameter negotiation and synchronization in advance. Upon MS drops arising, it can communicate with MRS immediately and then the MRS reports corresponding MS information to its serving station.

6.3.22.4.xx MRS Drops during handover

MRS can detect its drop by its failure demodulate the downlink, and the attached MSs can detect its drops for they cannot receive correct downlink information from its current MRS. As MS which connect with BS directly, the attached MSs can also receive control information from serving BS.

When MRS detects its drop before sending the MAC message MOB_HO_IND, MRS may try to resume communication with current serving station by sending the MAC message MOB_HO_IND with HO_type=0b01(or 0b10) to cancel(or reject) handover. If MRS detects its drop after sending the MAC message MOB_HO_IND with HO_type=0b00 (resource release), and serving BS does not receive the successful network attachment at target station over backbone, MRS may transmit new MOB_HO_IND with HO_type=0b01 (or 0b10) to cancel (or reject) handover. The old MOB_HO_IND message will be neglected if the new MOB_HO_IND message is received by serving BS before resource-retain-time timer expiration. On the contrary, the new MOB_HO_IND message will be neglected if it is received after resource-retain-time timer expiration. Under such circumstance, MRS still performs handover ranging with its preferred target BS in term of normal handover operation. During MRS drops interval, the attached MSs connect to current serving BS temporary.

When serving BS detects a drop, it shall react as if a MOB_HO_IND message has been received with HO_IND_type=0b00, which is similar to IEEE 802.16e. The following procedure may adopt the scheme for the latter case.

Target BS may send RNG_RSP with 'ranging status'=continue and time, power, frequency adjustment information when MRS is unable to perform handover ranging with its target BS successfully. If MRS cannot establish correct connection with its target BS during network reentry, MRS shall attempt to resume communication with serving BS, and search for appropriate target BS at the same time through cell reselection.

Reference

[1] Mobile RS Handover. IEEE C802.16j-07/122r4. Sungkyung Kim, Sungcheol Chang, Chulsik Yoon, Sunggeun Jin. ETRI.

[2] Handover of Mobile Relay Station. IEEE C802.16j-07/147r3. Kaibin Zhang, Gang Shen, Jimin Liu, Shan Jin. Alcatel-Lucent, Rearch &Innovation.