HARQ ACK Channel and Retransmission Dummy Pattern Performance Comparison

IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number: IEEE C802.16j-07/290
Date Submitted: 2007-04-06

Source:
Wen Tong, Hang Zhang, Peiying Zhu, Mohan Fong Voice: 613-763-1315
Gamini Senarath, David Steer, Israfil Bahceci, G.Q. Wang Email: wentong@nortel.com
Mark Naden, Derek Yu
Nortel
3500 Carling Avenue
Ottawa, Ontario
CANADA

Venue:
IEEE 802.16 Session #49, Portland, USA

Base Document:
IEEE C802.16j-06/026r2 and URL <http://ieee802.org/16/… C80216j-06_026r2.pdf>

Purpose:
Performance comparison of HARQ ACK/NAK channels and re-transmission dummy pattern

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Background

- Several ACK/NCK channels schemes are proposed for MR system.
 - Performance and overhead tradeoff should be compared

- Several re-transmission dummy patterns are proposed for MR system
 - Performance should be compared and optimized

- This draft serves a placeholder for reporting the simulation results to the HARQ ad-hoc
 - Simulations working is running
CQICH Coding

- Assume x_{ij} as the transmit symbol at data tone j of the tile i, where $i = 0, 1, \ldots, 5$, and $j = 0, 1, \ldots, 7$.
- $X=[x_{ij}]$ is selected from the codebook P.
 - $p=[p_{ij}]$ is a codeword of the codebook P containing 64 different codewords.
 - p_{ij} is selected from a QPSK constellation.
 - Each codeword represents a 6-bit binary number.
- Assume y_{ijk} as the received symbol at the receive antenna number k.
Coherent Detector

- h_{ijk}^\wedge represents estimated channel between transmit antenna and the kth receive antenna for the data tone j and tile i.
 - Channel is estimated based on the received pilots per each tile.
 - The best channel estimation method is to average the 4 pilots over a uplink tile.
- Coherent detection is defined as follows:

$$\hat{p} = \arg \max_{p = [p_{ij}] \in P} \text{Re} \left(\sum_{i,j,k} \hat{h}_{ijk}^\wedge p_{ij}^\wedge y_{ijk}^\wedge \right)$$
Non-coherent Detector

- No channel estimation
- Non-coherent detection is defined as follows:

\[\hat{p} = \arg \max_p \sum_i \left(\sum_j p_{ij} |y_{ijk}|^2 \right) \quad p = [p_{ij}] \in P_{i,k} \]
Pilot Overhead

- Coherent detection needs pilot for channel estimation.
- Pilot overhead for uplink tile is $10\log_{10}(12/8) \sim 1.7$ dB assuming no pilot power boost.
- Benefit of non-coherent detection is that there is no need to transmit pilots.
 - Null pilot tones
 - 1.7 dB power saving in comparison to coherent detection
Coherent: Perfect CSI
Coherent: Channel Estimation
Non-Coherent: Same Data Tone Power As Coherent
Non-Coherent: Same Average Tx Power As Coherent
Coherent: Perfect CSI
Coherent: Channel Estimation
Non-Coherent: Same Data Tone Power As Coherent
Non-Coherent: Same Average Tx Power As Coherent
Coherent: Perfect CSI
Coherent: Channel Estimation
Non-Coherent: Same Data Tone Power As Coherent
Non-Coherent: Same Average Tx Power As Coherent