Clarification on uplink MIMO for relay station with multiple antennas

This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Clarification on Uplink MIMO for Relay Station with Multiple Antennas

1. Introduction

In IEEE 802.16 working group letter ballot #28, some comments point out that the superscripts in figure 306a and 306b are not clearly defined [1][2] and the meaning of the pilot subcarrier are ambiguous [3]. In this contribution, the meanings of the superscripts are clarified and in order to avoid the ambiguous meaning of the pilot subcarrier, the “pilot subcarrier” and “+ pilot subcarrier” are incorporated as “+ pilot subcarrier” in figure 306a and 306b because they have the same meaning.

2. Proposed Text

In the following, the text in black denotes the original text in IEEE P802.16j/D1[4] and the text in blue denotes the new added text.

8.4.8.1.5 Uplink using STC

Insert the following at the end of 8.4.8.1.5

For RS using three antennas, the MIMO coding matrices defined in 8.4.8.3.4 shall be mapped to the tile according to Figure 306a. One tile shall contain two MIMO coding matrices, i.e. S^1 and S^2, which can be A_1, A_2, A_3, B_1, B_2 or B_3 defined in 8.4.8.3.4. The elements of the two MIMO coding matrices should be mapped to tile according to Figure 306a, where S^1_{mn} denotes the m^{th} row n^{th} column element of the first MIMO coding matrix and S^2_{mn} denotes the m^{th} row n^{th} column element of the second MIMO coding matrix.

For RS using four antennas, the MIMO coding matrices defined in 8.4.8.3.5 shall be mapped to the tile according to Figure 306b. One tile shall contain two MIMO coding matrices, i.e. S^1 and S^2, which can be $A_1, A_2, A_3, B_1, B_2, B_3, B_4, B_5$ or B_6 defined in
8.4.8.3.5. The elements of the two MIMO coding matrices should be mapped to tile according to Figure 306b, where \(S_{mn}^1 \) denotes the \(m \)th row \(n \)th column element of the first MIMO coding matrix and \(S_{mn}^2 \) denotes the \(m \)th row \(n \)th column element of the second MIMO coding matrix.

![Figure 306b Mapping of data subcarriers for 4-antenna RS](image)

3. References

