The purpose of this slide set is to introduce our contribution C802.16j-06_020r1. This contribution proposes the channel models and performance metrics to be used in IEEE 802.16j Relay Task Group for performance evaluation in urban environment.
Contribution Authors

David Chen
Motorola Inc
1441 W. Shure Drive,
Arlington Heights, IL 60004 USA
adavid.t.chen@motorola.com

I-Kang Fu
National Chiao Tung University /
Industrial Technology Research Institute
1001 Ta Hsueh Road,
Hsinchu, Taiwan 300, ROC
apatch.cm91g@nctu.edu.tw

Mike Hart
Fujitsu Laboratories of Europe Ltd.
Hayes Park Central
Hayes End, Middx., UK, UB4 8FE
Mike.Hart@uk.fujitsu.com

Wendy C Wong
Intel Corporation
2200 Mission College Blvd.,
Santa Clara, CA 95054.
wendy.c.wong@intel.com
Outline

• Introduction

• Classification of Propagation Scenarios

• Channel Model for Each Propagation Scenario

• Performance Metrics and Presentation

• Reference
Introduction

- This contribution proposes the channel models and performance metrics to be used in IEEE 802.16j Relay Task Group for performance evaluation.

- The channel models for urban environment is proposed in this version and will be updated to include other environments in the future.
 - The models in this contribution are mostly referenced from [1], which specifies the channel models for various relay transmission scenarios.
Classification of Propagation Scenarios

- The propagation scenarios are classified by the type of each hop and LOS/NLOS (Non-Line-Of-Sight) condition. Following scenarios are considered:

 - Scenario 2.1 BS↔RS, LOS

 - Scenario 2.2 BS↔RS, NLOS
Classification of Propagation Scenarios

- Scenario 2.3 BS↔MS, LOS

 - The probability to have LOS condition between BS and MS is considered as zero in urban environment [1], therefore, there is no specific channel model for this scenario.

 - Our interpretation is that the occasional gain from LOS condition between BS↔MS is included in log-normal shadow fading effect in NLOS environment with corresponding low probability.

- Scenario 2.4 BS↔MS, NLOS
Classification of Propagation Scenarios

- Scenario 2.5 RS↔RS, LOS

- Scenario 2.6 RS↔RS, NLOS
Classification of Propagation Scenarios

- Scenario 2.7 RS↔MS, LOS

- Scenario 2.8 RS↔MS, NLOS
The channel model for each scenario is characterized by four parts: pathloss, shadow fading, multi-path fading and antenna pattern.

Pathloss model [1]

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Pathloss Model</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 BS→RS, LOS</td>
<td>(\text{Pathloss}(d) [\text{dB}] = 42.5 + 23.5 \cdot \log_{10}(d) + 20 \cdot \log_{10}(\frac{f_c}{5}))</td>
<td>(d) is the distance in meter between transmitter and receiver, (f_c) is the carrier frequency in GHz.</td>
</tr>
<tr>
<td>2.2 BS→RS, NLOS</td>
<td>(\text{Pathloss}(d) [\text{dB}] = 38.4 + 35 \cdot \log_{10}(d) + 20 \cdot \log_{10}(\frac{f_c}{5}) - 0.7 \cdot h_m)</td>
<td>(h_m) is the height (meter) of the RS below rooftop for scenario 2.2 and 2.6.</td>
</tr>
<tr>
<td>2.4 BS→MS, NLOS</td>
<td>(\text{Pathloss}(d) [\text{dB}] = 41 + 22.7 \cdot \log_{10}(d) + 20 \cdot \log_{10}(\frac{f_c}{5}))</td>
<td>(h_m = 1.5) for scenario 2.4.</td>
</tr>
<tr>
<td>2.6 RS→RS, NLOS</td>
<td>(\text{Pathloss}(d_1, d_2) [\text{dB}] = 65 + 0.096 \cdot d_1) (+ (28 - 0.024 \cdot d_1) \cdot \log_{10}(d_2) + 20 \cdot \log_{10}(\frac{f_c}{5}))</td>
<td>(d_1) and (d_2) are the distances along main street and perpendicular street respectively. (see Figure 3).</td>
</tr>
</tbody>
</table>
Channel Model for Each Propagation Scenarios

- **Log-normal shadow fading** model with correlation [2] is considered in this contribution, which has different parameter for each scenario.

 - Consider the de-correlation distance as 20m [3]

 - Different standard deviation is considered for each propagation scenario [1]:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2.1 BS↔RS LOS</th>
<th>2.2 BS↔RS NLOS</th>
<th>2.4 BS↔MS NLOS</th>
<th>2.5 RS↔RS LOS</th>
<th>2.6 RS↔RS NLOS</th>
<th>2.7 RS↔MS LOS</th>
<th>2.8 RS↔MS NLOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation of log-normal shadow fading (σ)</td>
<td>3.4dB</td>
<td>8dB</td>
<td>8dB</td>
<td>3.4dB</td>
<td>8dB</td>
<td>2.3dB</td>
<td>3.1dB</td>
</tr>
</tbody>
</table>

Note: The shadow fading for LOS scenario represents the different level of first Fresnel zone clearance [7]
Channel Model for Each Propagation Scenarios

- **Multipath fading model**
 - The tapped delay line model for each propagation scenario and Doppler spectrum are listed in section 3.3

- **Antenna pattern**
 - For omni-directional antenna, the antenna gain is considered as 0 dBi for each direction.
 - For 3 or 6-sector antenna, following antenna pattern are considered [4]:

- $-180^\circ < \theta \leq 180^\circ$
- θ is the angle between the direction of interest and the steering direction of the antenna;
- $\theta_{3\text{db}} = 70^\circ$ is the 3 dB beam width for 3 sector antenna, $\theta_{3\text{db}} = 35^\circ$ for 6 sector antenna.
- $A_m = 20\text{dB}$ maximum attenuation (front-to-back ratio) for 3 sector antenna, 23dB for 6 sector antenna.
Performance Metrics and Presentation

- The following performance metrics are proposed to be considered in IEEE 802.16j Relay TG for performance comparison:
 - Over the air (OTA) throughput
 - Packet delay
 - Throughput for various QoS classes
 - Throughput outage
 - Packet call throughput
 - Sector throughput
 - BS Duty Factor (Utilization)
 - RS Duty Factor (Utilization)
 - Delay per packet, per connection, per application.
 - Jitter per application
 - Overhead ratio
 - Effective spectral efficiency
 - Fairness
 - Route discovery/recovery time
 - Dropped calls due to unsuccessful handover, sleep and idle modes
 - Packet loss rate
Performance Metrics and Presentation

- The following metric presentations are proposed for performance comparison in 802.16j Relay TG:
 - CDF of user packet delay for delay sensitive traffics
 - Plot of system throughput vs. average user throughput
 - CDF of normalized user packet call throughput with fairness criterion
 - CDF of user packet call throughput
 - User throughput vs. distance
 - System load vs outage probability
 - CDF of received signal quality
 - Effective spectral efficiency
Reference

