Contribution Authors

Jaroslaw Sydir jerry.sydir@intel.com
Kerstin Johnsson
Hyunjeong Hannah Lee
Wendy Wong
Frank Favichia
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95025

Youn-Tai Lee lyt@nmi.iii.org.tw
Shiann-Tsang Sheu
Kanchei (Ken) Loa
Frank C. D. Tsai
Yung-Ting Lee
Institute for Information Industry (III)
8F., No. 218, Sec 2, Dunhua S. Rd.
Taipei City, 106
Taiwan

Roger Peterson r.peterson@motorola.com
Masahito Asa
Ariel Sharon
Shyamal Ramachandran
David Chen
Nat Natarajan
Motorola
1301 E. Algonquin Road,
Schaumburg, IL 60196 USA

Wern Ho Sheen whsheen@itri.org.tw
ITRI
195, Sec. 4, Chung Hsing Rd.
Chutung, Hsinchu, Taiwan 310

Mike Hart mike.hart@uk.fujitsu.com
Fujitsu Laboratories of Europe Ltd.
Hayes Park Central, Hayes, Middx, UK, UB4 8FE
Overview

• There is no one-to-one mapping between usage models, RS types, and deployment strategies
• Different types of RSs can be used to implement any usage model
• We define separately:
 – RS Types
 • Based on complexity/cost of implementation and deployment
 – Usage Models
 • Based on usage in the network
 – Deployment Strategies
 • Based on ways to plan cell site locations
RS Types

• **Simple RS**
 – Low cost RS
 – One transceiver
 – No control functionality, but:
 • Transmits preamble
 • Relays broadcast and control messages
 – Antenna switch to optionally support multiple antennas

• **Full Function Fixed/Portable RS**
 – operates on multiple OFDMA channels
 – optionally supports MIMO
 – implements distributed control functions

• **Mobile RS** – Full function RS with mobility
Usage Models

• **Enhanced Data Rate Coverage**
 – Provide higher SINR to MSs in low SINR areas of cell
 – Provide higher SINR to MSs in “coverage holes”

• **Range Extension**
 – Provide coverage to users outside edge of the cell

• **Capacity Enhancement**
 – Increase system capacity by enabling more aggressive frequency reuse
Enhanced Data Rate Coverage Topology

- Higher SINR at cell edge
- Good SINR in coverage hole
Enhanced Data Rate Coverage Model

• Frequency Usage
 – Capacity not an issue, thus aggressive frequency reuse not required
 – If interference not an issue
 • Channel can be shared among access and MMR links
 • Separate channels can be used for access and MMR links
 – If interference is an issue
 • Separate channels for MMR and access links
 • TDM partitioning and coordination to reduce

• Implementation by Simple RS
 – One channel for both access and MMR links
 – TDM partitioning of transmit opportunities if interference is a problem

• Implementation by Full Function RS
 – Can use one channel for both access and MMR links
 – Can use different channels as well
Range Extension Topology

MMR-BS

RS

RS

Range Extension
Capacity Enhancement Topology Example 1

Hexagon represents area within which MMR-BS or RS provides coverage to MSs.

MMR-BS and RSs can communicate even though RSs are outside the area in which MMR-BS provides coverage to MSs.

Colors indicate access link frequencies (1x1x3 reuse).
Capacity Enhancement Model

• Frequency Usage
 – Aggressive frequency reuse assumed
 – Actual distribution of channels across MMR and access links depends on topology, coordination capabilities, etc.

• Implementation by Simple RS
 – One channel for both access and MMR links
 – Each RS on separate channel, reuse pattern to increase capacity
 – Small MMR cell to enable centralized control

• Implementation by Full Function RS
 – Multi-channel support (i.e. access and MMR links can reside on different channels) provides maximum flexibility in frequency planning
 – Distributed control
Deployment Strategies

• LOS deployment strategy
 – RS locations and antenna placement are carefully planned in order to achieve LOS links between MMR-BS and RSs and between RSs.

• NLOS deployment strategy
 – RS locations and antenna placement are not constrained by the need to achieve LOS links between MMR-BS and RSs.
 – Techniques such as MIMO are used to provide sufficient capacity or link budget enhancement on MMR links

• Mobile RS deployment strategy
Backup
Major RS Capabilities

<table>
<thead>
<tr>
<th></th>
<th>Simple RS</th>
<th>Full Function Fixed/Nomadic RS</th>
<th>Mobile RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of OFDMA channels</td>
<td>1</td>
<td>>1</td>
<td>>1</td>
</tr>
<tr>
<td>Duplexing on MMR and access links</td>
<td>TDD</td>
<td>TDD or FDD</td>
<td>TDD or FDD</td>
</tr>
<tr>
<td>Frequency sharing between access and MMR links</td>
<td>Yes</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Control Functions</td>
<td>Centralized in MMR-BS</td>
<td>Centralized in MMR-BS or distributed in RSs</td>
<td>Centralized in MMR-BS or distributed in RSs</td>
</tr>
<tr>
<td>Mobility</td>
<td>Fixed/Nomadic</td>
<td>Fixed/Nomadic</td>
<td>Mobile</td>
</tr>
<tr>
<td>Antenna support</td>
<td>SISO</td>
<td>MIMO</td>
<td>MIMO</td>
</tr>
</tbody>
</table>
Range Extension Model

- Frequency Usage
 - Similar to Enhanced Data rate Coverage Model

- Implementation by Simple RS
 - Similar to Enhanced Data rate Coverage Model

- Implementation by Full Function RS
 - Similar to Enhanced Data rate Coverage Model
Capacity Enhancement Example Topology 2
Usage Model Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Enhanced Data Rate Coverage Model</th>
<th>Range Extension Model</th>
<th>Capacity Enhancement Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS Location</td>
<td>Outer donut in MMR-BS cell; coverage holes within MMR-BS cell</td>
<td>Usage clusters outside the perimeter of the MMR-BS cell</td>
<td>Environment Dependant. High capacity demand locations within the MMR-BS cell</td>
</tr>
<tr>
<td>MMR Link Capacity</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Frequency Reuse in MMR Cell</td>
<td>Not required but possible</td>
<td>Not required but possible</td>
<td>Required</td>
</tr>
</tbody>
</table>
Deployment Strategy Characteristics

<table>
<thead>
<tr>
<th></th>
<th>LOS Strategy</th>
<th>NLOS Strategy</th>
<th>Mobile RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Channel Conditions</td>
<td>LOS, Ricean</td>
<td>NLOS</td>
<td>Varies</td>
</tr>
<tr>
<td>RS Deployment</td>
<td>Carefully planned</td>
<td>Convenient location near traffic demand</td>
<td>Random</td>
</tr>
<tr>
<td>RS Antenna Location</td>
<td>Tower, building</td>
<td>Tower, building, light post, other</td>
<td>Bus, train</td>
</tr>
<tr>
<td>RS Mobility</td>
<td>Fixed, carefully placed portable</td>
<td>Fixed, portable</td>
<td>Mobile</td>
</tr>
<tr>
<td>MMR-BS Deployment</td>
<td>Carefully planned</td>
<td>Carefully planned</td>
<td>Carefully planned</td>
</tr>
<tr>
<td>MMR-BS Antenna Location</td>
<td>tower</td>
<td>tower</td>
<td>tower</td>
</tr>
</tbody>
</table>