Traffic models comments on IEEE 802.16j-06/013

Document Number: [IEEE S802.16j-06/093r3]
Date Submitted: [2006-09-26]
Source:
Wendy C. Wong, Roshni. Srinivasan, Hyunjeong Lee, Sydir Jerry,
Kerstin Johnsson, Sassan Ahmadi, Belal Hamzeh, Shailender Timiri
e-mail: wendy.c.wong@intel.com
Intel Corp.,
2200 Mission College Blvd., Santa Clara, CA 95054, USA

Peter Wang
e-mail: peter.wang@nokia.com
Nokia US
6000 Connection Dr. Irving, TX 75039, USA

Mike Hart, Sunil Vadgama
e-mail: Mike.Hart@uk.fujitsu.com
Fujitsu Laboratories of Europe Ltd.
Hayes Park Central, Hayes End, Middx., UB4 8FE, UK.

Peng-Yong Kong, Haiguang Wang
e-mail: kongpy@i2r.a-star.edu.sg
Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore 119613

Hyunjeong Kang , Jaeweon Cho, Hyoungkyu Lim
Hyunjeong.kang@samsung.com
Samsung Electronics Co., Ltd
416 Maetan-dong, Yeongtong-gu, Suwon-si,
Gyeonggi-do, 443-742, Korea

I-Kang Fu
e-mail: IKFu@itri.org.tw
National Chiao Tung University / Industrial Technology Research Institute
1001 Ta Hsueh Road, Hsinchu , Taiwan 300, ROC.
3500 Carling Avenue, Ottawa, On K2H 8E9 Canada

David, Chen
e-mail: david.t.chen@motorola.com
Motorola Inc.
1441 W. Shure Drive, Arlington Heights, IL 60004 USA

Dhamma Basgeet, Yong Sun
e-mail: Dhamma.Basgeet@toshiba-trel.com
Toshiba Research Europe Limited
32 Queen Square, Bristol BS1 4 ND

Jun Bae Ahn
e-mail: jbahm@st.co.kr
SOLiD Technologies
10th Fl., IT Venture Tower East Wing,
78 Garak-Dong, Dongpa-Gu, Seoul, 138-803 Korea

Aik Chindapol , Teck Hu
ai.k.chindapol@siemens.com
Siemens
755 College Road East, Princeton, NJ 08540

Venue: IEEE 802.16 #45
Base Document: IEEE 802.16j-06/013
Purpose: Improve the traffic models in IEEE 802.16j-06/013

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/policy.html>.
Table of Content

• Summary of contribution
• Bursty traffic generation model
• Traffic model
 – HTTP
 – FTP
 – Near real time video streaming
 – VoIP
 – Gaming
• Traffic mix proposal
• Summary
Summary of contribution

• We propose to replace the traffic models in Section 3 and Appendix C of IEEE 802.16j-06/013 with our traffic models in IEEE 802.16j-06/093.

• Based on 3GPP2 traffic models (3GPP2/TSG-C.R1002, “1xEV-DV Evaluation Methodology (V14)”), we re-organized models and added missing gaming model to the original traffic modes in IEEE 802.16j-06/013.

• The following traffic models will be included
 – HTTP [1][2][7]
 – FTP [1][2]
 – NRT video streaming [1][2]
 – VoIP [1][3][4][5]
 – Gaming [1][6]
Bursty traffic generation model

- All traffic model can be generated using a bursty traffic generation model.
Bursty traffic generation model-2

• Parameter of interests are:
 – Session inter-arrival time and session duration
 – Packet call inter-arrival time and duration
 – Datagram inter-arrival time and datagram size
Traffic models - HTTP

- Interactive and self-similar
Traffic models – HTTP parameter description

• Session arrival is poisson with rate
• Session duration distribution is indirectly determined by other parameters, i.e., # of pages/session, size of objects, and reading time
• Within a packet call, the following parameters are important:
 – S_M: size of the main object in a packet call
 – S_E: size of an embedded object in a packet call
 – N_d: number of embedded objects in a packet call
 – D_{pc}: reading time
 – T_p: parsing time for main page
Traffic models – HTTP parameters

<table>
<thead>
<tr>
<th>Component</th>
<th>Distribution</th>
<th>DL Parameters</th>
<th>UL Parameters</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Pages/Session</td>
<td>Lognormal</td>
<td>Mean = 17, Std. Dev = 22</td>
<td>Mean = 17, Std. Dev = 22</td>
<td></td>
</tr>
<tr>
<td>Main object size ((S_m))</td>
<td>Truncated Lognormal</td>
<td>Mean = 10710 bytes, Std. dev. = 25032 bytes, Minimum = 100 bytes, Maximum = 2 Mbytes, 1.37, =8.35</td>
<td>Mean = 9055 bytes, Std. dev. = 13265 bytes, Minimum = 100 bytes, Maximum = 100 Kbytes, 1.37, =8.35</td>
<td>(f_x = \frac{1}{\sqrt{2\pi s_x}} \exp\left(-\frac{(\ln x - m)^2}{2s_x^2}\right),)</td>
</tr>
<tr>
<td>Embedded object size ((S_e))</td>
<td>Truncated Lognormal</td>
<td>Mean = 7758 bytes, Std. dev. = 126168 bytes, Minimum = 50 bytes, Maximum = 2 Mbytes, 2.36, =6.17</td>
<td>Mean = 5958 bytes, Std. dev. = 11376 bytes, Minimum = 50 bytes, Maximum = 100 Kbytes, 1.69, =7.53</td>
<td></td>
</tr>
<tr>
<td>Number of Embedded objects per page ((N_d))</td>
<td>Truncated Pareto</td>
<td>Mean = 5.64, Max. = 53</td>
<td>Mean = 4.229, Max. = 53</td>
<td>(f_x = \frac{a}{k+1} \cdot \frac{a}{x}, x < m) (f_x = \frac{a}{m}, x = m) (a = 1.1, k = 2, m = 55) Note: Subtract k from the generated random value to obtain (N_d)</td>
</tr>
<tr>
<td>Reading time ((D_{pc}))</td>
<td>Exponential</td>
<td>Mean = 30 sec</td>
<td>Mean = 30 sec</td>
<td></td>
</tr>
<tr>
<td>Parsing time ((T_p))</td>
<td>Exponential</td>
<td>Mean = 0.13 sec</td>
<td>Mean = 0.13 sec</td>
<td></td>
</tr>
</tbody>
</table>

11/08/06
Traffic models – FTP

• DL FTP user session

• For UL FTP traffic, each packet call refers to the transfer of one file only.
Traffic models – FTP parameter description

• For DL FTP session
 – Session arrival has Poisson with rate λ.
 – Session duration distribution is TBD (It can be modeled indirectly by # files transferred per session, file size, and reading time)
 – Packet calls are made up of file transfer with parameter of interests:
 • S: size of file to be transferred
 • D_{pc}: reading time

• For UL FTP session
 – FTP users arrive according to Poisson again.
 – Parameter of interest is upload file size.
Traffic models – FTP parameters

- **DL FTP model**

<table>
<thead>
<tr>
<th>Component</th>
<th>Distribution</th>
<th>Parameters</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>File size (S)</td>
<td>Truncated Lognormal</td>
<td>Mean = 2Mbytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std. Dev. = 0.722 Mbytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum = TBD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum = 5 Mbytes</td>
<td></td>
</tr>
<tr>
<td>Reading time (D_{pe})</td>
<td>Exponential</td>
<td>Mean = 180 sec.</td>
<td></td>
</tr>
</tbody>
</table>

\[f_X = \frac{1}{\sqrt{2 \pi s_x}} \exp\left(-\frac{(\ln x - m)^2}{2s^2}\right), x \geq 0 \]

\[s = 0.35, m = 14.45 \]

- **UL FTP model**

<table>
<thead>
<tr>
<th>Component</th>
<th>Distribution</th>
<th>Parameters</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>File size (S)</td>
<td>Truncated Lognormal</td>
<td>Mean = 19.5kbytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std. Dev. = 46.7kbytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum = 0.5kbytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum = 500 kbytes</td>
<td></td>
</tr>
</tbody>
</table>

\[f_X = \frac{1}{\sqrt{2 \pi s_x}} \exp\left(-\frac{(\ln x - m)^2}{2s^2}\right), x \geq 0 \]

\[s = 2.0899, m = 0.9385 \]
Traffic models – Near real time video streaming for DL

- Video session is assumed to last the whole simulation.
- Packet call arrives regularly every frame. There is zero OFF period in a video session.
Traffic models – Near real time video streaming for DL parameter

- Each video frame arrives at a regular interval T
- Each frame is a packet call
- Within each frame (packet call), datagrams arrive randomly with randomly distributed packet sizes.

<table>
<thead>
<tr>
<th>Information types</th>
<th>Inter-arrival time between the beginning of each frame</th>
<th>Number of packets (slices) in a frame</th>
<th>Packet (slice) size</th>
<th>Inter-arrival time between packets (slices) in a frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td>Deterministic (Based on 10fps)</td>
<td>Deterministic</td>
<td>Truncated Pareto (Mean= 50bytes, Max= 125bytes)</td>
<td>Truncated Pareto (Mean= 6ms, Max= 12.5ms)</td>
</tr>
<tr>
<td>Distribution</td>
<td>100ms</td>
<td>8</td>
<td>$K=20$bytes $= 1.2$</td>
<td>$K=2.5$ms $= 1.2$</td>
</tr>
</tbody>
</table>
Traffic model - VoIP

Exponential distribution with average duration of \(1/b\)

Packet calls

Exponential distribution with average duration of \(1/b\)

Active State
Packet size
79 or 41 bytes

Inactive State
Packet size
51 or 15 bytes
Traffic model – VoIP parameters

• VoIP users arrives with Poisson distribution with rate λ.
• Session duration is TBD distribution.
• Use simplified AMR model with active state and inactive state generating packets of different constant size depending on with or without header compression and using IPv4 or IPv6
 – Active state: 33 bytes of AMR payload for every 20msec
 – Inactive state: 7 bytes of AMR payload for every 160msec
VoIP Packet Size Calculation

<table>
<thead>
<tr>
<th>Description</th>
<th>AMR without Header</th>
<th>AMR with Header</th>
<th>G.729 without Header</th>
<th>G.729 with Header</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPV4(IPv6)</td>
<td>IPV4(IPv6)</td>
<td>IPV4(IPv6)</td>
<td>IPV4(IPv6)</td>
</tr>
<tr>
<td>Voice Payload</td>
<td>7bytes (inactive) * 33 bytes (active)</td>
<td>7bytes (inactive) 33 bytes (active)</td>
<td>0 bytes (inactive) 20 bytes (active)</td>
<td>0 bytes (inactive) 20 bytes (active)</td>
</tr>
<tr>
<td>Protocol Headers</td>
<td>40 bytes (60 bytes)</td>
<td>2 bytes (4 bytes)</td>
<td>40 bytes (60 bytes)</td>
<td>2 bytes (4 bytes)</td>
</tr>
<tr>
<td>RTP</td>
<td>12 bytes</td>
<td>12 bytes</td>
<td>12 bytes</td>
<td>12 bytes</td>
</tr>
<tr>
<td>UDP</td>
<td>8 bytes</td>
<td>8 bytes</td>
<td>8 bytes</td>
<td>8 bytes</td>
</tr>
<tr>
<td>IPv4 (IPv6)</td>
<td>20 bytes (40 bytes)</td>
<td>20 bytes (40 bytes)</td>
<td>20 bytes (40 bytes)</td>
<td>20 bytes (40 bytes)</td>
</tr>
<tr>
<td>802.16e GMH</td>
<td>6 bytes</td>
<td>6 bytes</td>
<td>6 bytes</td>
<td>6 bytes</td>
</tr>
<tr>
<td>CRC</td>
<td>4 bytes</td>
<td>4 bytes</td>
<td>4 bytes</td>
<td>4 bytes</td>
</tr>
<tr>
<td>Total VoIP packet size</td>
<td>57 bytes/ 77 bytes (inactive) 83 bytes / 103 bytes (active)</td>
<td>19 bytes/ 21 bytes (inactive) 45 bytes/ 47 bytes (active)</td>
<td>0 bytes (inactive) 70 bytes / 90 bytes (active)</td>
<td>0 bytes (inactive) 32 bytes/ 34 bytes (active)</td>
</tr>
</tbody>
</table>
Traffic models – VoIP parameters

<table>
<thead>
<tr>
<th>Component</th>
<th>Distribution</th>
<th>Parameters</th>
<th>PDF</th>
</tr>
</thead>
</table>
| Active state duration | Exponential | Mean = 1 second | $f_x = l e^{-lx}, x \geq 0$
| | | | $l = 1/\text{Mean}$ |
| Inactive state duration | Exponential | Mean = 1.5 second | $f_x = l e^{-lx}, x \geq 0$
| | | | $l = 1/\text{Mean}$ |
| Probability of transition from active to inactive state | N/A | (=0.6) | |
| Probability of transition from inactive to active state | N/A | (=0.4) | |
Traffic models – Gaming

• Gaming user session arrival with Poisson distribution with arrival rate λ.
• Gaming user session duration has TBD distribution.

<table>
<thead>
<tr>
<th>Component</th>
<th>Distribution</th>
<th>Parameters</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f(x) = \frac{1}{b-a}, \ a \ x \ b$</td>
</tr>
<tr>
<td>Initial packet</td>
<td>Uniform</td>
<td>a=0, b=40ms</td>
<td>$f(x) = \frac{1}{b-a}, \ a \ x \ b$</td>
</tr>
<tr>
<td>arrival</td>
<td>Uniform</td>
<td>a=0, b=40ms</td>
<td>$f(x) = \frac{1}{b-a}, \ a \ x \ b$</td>
</tr>
<tr>
<td>Packet</td>
<td>Extreme</td>
<td>a=48ms, b=4.5ms</td>
<td>$f(x) = \frac{1}{b} e^{-\frac{x-a}{b}} e^{-\frac{b}{x-a}}, \ b > 0$</td>
</tr>
<tr>
<td>arrival time</td>
<td>Extreme</td>
<td>a=40ms, b=6ms</td>
<td>$X = a - b \ln(-\ln Y), \ Y \sim U(0,1)$</td>
</tr>
<tr>
<td>Packet size</td>
<td>Extreme</td>
<td>a=330bytes, b=82</td>
<td>$f(x) = \frac{1}{b} e^{-\frac{x-a}{b}} e^{-\frac{b}{x-a}}, \ b > 0$</td>
</tr>
<tr>
<td></td>
<td>Extreme</td>
<td>a=45bytes, b=5.7</td>
<td>$X = a - b \ln(-\ln Y) + 2, \ Y \sim U(0,1)$</td>
</tr>
</tbody>
</table>
Traffic mix proposal

<table>
<thead>
<tr>
<th></th>
<th>Voice Capacity</th>
<th>FTP</th>
<th>HTTP</th>
<th>n.r.t. video</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice Capacity</td>
<td>100% #users = Nv</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Data Capacity</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Traffic Mix 1</td>
<td>0.5 Nv</td>
<td>Remaining Data Users</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Traffic Mix 2</td>
<td>0.5 Nv</td>
<td>Remaining Data Users</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Traffic Mix 3</td>
<td>0.75 Nv</td>
<td>Remaining Data Users</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>
References

