Rate-Compatibility and Incremental Redundancy HARQ for 802.16j LDPC codes

IEEE 802.16 Presentation Submission Template (Rev. 8.3)

Document Number: IEEE C802.16j-06/184r1
Date Submitted: 2006-11-07
Source: Wataru Matsumoto, Toshiyuki Kuze
Voice: +81-467-41-2074
Fax: +81-467-41-2136
Email: Matsumoto.Wataru@aj.MitsubishiElectric.co.jp
Kuze.Toshiyuki@ah.MitsubishiElectric.co.jp

Koon Hoo Teo, Jinyun Zhang
Mitsubishi Electric Research Lab
201 Broadway, Cambridge, MA 02139, USA
Voice: 617-621-{7557, 7527}
Fax: 617-621-7550
Email: {teo, jzhang}@merl.com

Venue: IEEE 802.16 Session #46, Dallas, Texas, USA
 Base Document: None
Purpose: Propose a Rate-Compatible and IR HARQ for 802.16j to improve reliability and throughput performance on relay links.

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy: The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Rate-Compatibility and Incremental Redundancy HARQ for 802.16j LDPC codes

Authors:

Wataru Matsumoto, Toshiyuki Kuze
Mitsubishi Electric Corporation
5-1-1 Ofuna Kamakura, Kanagawa
2478501, Japan

Koon Hoo Teo, Jinyun Zhang
Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139
The concept of “Enhanced Hybrid ARQ” is to provide \textit{Low cost, Reliability and Scalability}.
Motivation –Requested issues

- LDPC codes can provide lower cost hardware than CTC.
- High reliability on low data-rate region. → Expansion of coverage area
- Coexistence of the proposed RC-LDPC codes and the current 802.16e LDPC codes.
 → Minimize of additional circuits for RC-LDPC codes

![Fig1. Low Cost](image1)

![Fig2. Reliability and Scalability](image2)

![Fig3. coexistence of current LDPC](image3)

2006/11/13
Apply to 802.16e LDPC codes

Rate=1/2 code

Extend for Rate=1/3 code
Rate-Compatible LDPC codes

IR with Mother Rate=1/3 parity check matrix

<table>
<thead>
<tr>
<th>Rate > 1/2</th>
<th>Information bits</th>
<th>Puncturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate = 1/2</td>
<td>Information bits</td>
<td>Parity bits</td>
</tr>
<tr>
<td>Rate < 1/2</td>
<td>Information bits</td>
<td>Parity bits</td>
</tr>
</tbody>
</table>

- In addition to puncturing, extended parity matrixes are used to achieve flexible coding rate and rate compatibility.

- 802.16e LDPC will be used as the baseline for enhancement of the RC-LDPC.
Comparison with Turbo

Table. Operations count comparison of sub-optimal decoders LDPC and TC decoders.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>LDPC</th>
<th>TC</th>
<th>Complexity of LDPC / Complexity of TC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LBP Min-Sum + Offset</td>
<td>Max Log Map + extrinsic scaling</td>
<td></td>
</tr>
<tr>
<td>Number of Iterations</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total cost (R=1/3)</td>
<td>38.5K x 20 = 770K</td>
<td>171K x 8 = 1368K</td>
<td>56%</td>
</tr>
<tr>
<td>Total cost (R=1/2)</td>
<td>28.8K x 20 = 576K</td>
<td>171K x 8 = 1368K</td>
<td>42%</td>
</tr>
<tr>
<td>Total cost (R=3/4)</td>
<td>20.6K x 20 = 412K</td>
<td>171K x 8 = 1368K</td>
<td>30%</td>
</tr>
</tbody>
</table>

Reference: R1-060874, "Complexity Comparison of LDPC Codes and Turbo Codes"

3GPP TSG RAN WG1#44bis, Athens, Greece 27-31 Mar. 2006.
Performance of RC LDPC

Performance for RC LDPC codes based on the 16e LDPC codes

![Graph showing the performance of RC LDPC codes for different rates.]
Performance of RC LDPC

Performance for RC LDPC codes based on the 16e LDPC codes

Chase Combining / OPTIMAL

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

CNR (dB)

information length (bit)

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

rate 1/3
rate 1/2
IR(1/3⇒1/4)
CC(1/2⇒1/4)
Throughput Performance of LDPC Chase Combining and IR HARQ

Required SNR for BLER=10^{-2}

- code-rate: $4/5$ (1st)
- $3/4$ (1st)
- $2/3$ (1st)
- $1/2$ (1st)
- $1/3$ (1st)
RC-LDPC and 802.16e LDPC

LDPC provides low cost higher efficiency parallel decoding.

802.16e LDPC with CC for higher throughput.

RC-LDPC with IR for channel with hostile conditions.
Merits of RC-LDPC and 802.16e LDPC

Improved robustness provided by RC-LDPC low code rate and HARQ IR especially for channels with hostile conditions.

Decoding efficiency greatly improved by LDPC and making high throughput and low cost RS/BS possible for UL and DL.

Our Typical Model

Aggregation of traffic

Low Cost RS
Conclusions

- LDPC support high throughput with less hardware complexity and lower cost compared to Turbo codes

- RC-LDPC is an enhanced version of the 802.16e LDPC
 - 802.16e LDPC will be used as a baseline
 - RC-LDPC is rate compatible
 - Backward compatible to 802.16e LDPC
 - 802.16e LDPC with CC HARQ provides support for higher throughput link

- RC-LDPC provide improved robustness for channel in hostile conditions with
 - Low code rate such as 1/3 code rate
 - Incremental Redundancy for HARQ