Comparison between TG3 Functional Requirements Document and TG1 proposed MAC

Prepared by TG3 (2000-09-14)

-Comments in black

Responses by TG1 (2000-09-14) included

-Green means that TG1 MAC can support this now or it is easy to support

-Yellow means that TG1 has questions regarding these requirements

-Purple means that this is misinformation on behalf of TG3 regarding TG1

-Blue is a general response

Contents

- Essential FRD differences
- Expected difference in behavior
- TG1 MAC disadvantages from TG3 perspective

TG1, TG3 FRD

- TG1: Document IEEE 802.16.s-99/00r1
- TG3: Document IEEE 802.16.3-00/02r3, including modifications at Session #9
- "MAY" requirements not discussed here

Essential FRD differences - 1

	TG1	TG3
Services	Legacy telephony	IP
	Audio/Video Multicast	Bridged LAN
	ATM	Packet based voice
	IP	
Connection-less?	Supports all kind of such traffic	Mandatory
Peak data rate	155Mb/s	Capable of scaling beyond
(order of mag.)		10Mb/s
Maximum delay	5ms	20-40ms

Essential FRD differences - 2

	TG1	TG3
Classes of Services	ATM classification: CBR (SDH/PDH) VBR (VoIP, video)	IETF DiffServ classification: EF(VoIP,video)
	ABR(variable BW) UBR(best effort)	BES(best effort)
Typical channel width	25MHz*	3-3.5MHz
Cell max. radius	3km*	50km
ARQ	N.A.	YES

* - resulting from other considerations

Expected differences in the behavior of the TG1 and TG3 systems – 1

Why	TG1	TG3
Traffic characteristics	Large traffic pipes, always carrying data, quasi-static character	Mostly dynamic, small pipes, random demand
Legacy vs. IP	Low delay is required (1ms frames)	More flexible, less critical delay requirements
Bridged LAN	-	Requires 802.1d addressing for bridge support
High vs. low data rate	Low transmission time per packet	Variable transmission time, more than 1ms for long IP packets

Expected differences in the behavior of the TG1 and TG3 systems - 2

Why	TG1	TG3
Cell size range	Short contention period	Variable, longer, contention period
Variable length IP datagrams support	Segmentation may be used	Segmentation is less spectral efficient
ARQ	Down-link only Hard to introduce in up- stream due to the "policy rules"	Should be supported in both directions
ATM vs. IP QoS classification	Hard, 1ms, framing TG1"policy rules"	Flexible framing

TG1 MAC LIMITATIONS (from TG3 perspective)

TG1 MAC is PHY dependent

- The MAC is adapted for the QAM modulation
 - Mini-slot is defined in number of QAM symbols
 - defined in Physical Slots that are defined for each PHY separately.
 - The header is transmitted in QAM 4
 - transmitted in a "well known" burst profile. (PHY specific)
 - The equalizer parameters are for QAM
 - Currently does not exist, but can be added if needed.

The MAC is adapted for the QAM modulation (continued)

- Adaptive modulation support is defined for QAM
 - in burst types; not tied to any specific modulation and/or coding schemes.
- PHY burst parameters (modulation type, FEC parameters)????
 - code space exists for expansion to define additional burst parameters. (253 remaining)

1 ms frame duration

- Too short for IP variable packet length support
 - 1.7ms for 3.5MHz, 2bit/s/Hz, 1500bytes frame
- Too short to accommodate the contention period, with 50km distance
- Too short to accommodate delay for 50km (150us)
 - 32 different frame lengths may now be specified for each PHY.

Fixed framing

- Fixed framing is problematic with IP traffic
 - Long frames = long delay
 - QoS problems
 - TCP/IP throughput problems
 - Short frames = short delays
 - Require fragmentation
 - Spectral efficiency problems
 - Flexibility is a requirement for TG3
- Frameless Mode Exists!

No fast BW allocation

- Many CPE units with random data demand require fast BW allocation, as opposed to small number of users using legacy connection oriented services
- Slow (pseudo-static) and centralized BW allocation mechanism: request followed by allocation
- The piggy-back request is limited to 256bytes
- Contention based data transfer can be easily added.

No Acknowledge frames

- ARQ require fast variable BW allocation, which is against the TG1 up-link "policy rules"
- What is the issue?

VoIP VAD support

• BW requests are permitted only with unicasts - actually will not take any advantage of silence periods

• currently supported

VoIP VAD support

- Not suitable for relatively long compression intervals, demanding fast BW allocation for efficient support (a loss of packet will be perceived)
- directly supported by UGS-AD

Multicast and LAN-to-LAN bridging support?

- Addressing mode: based on connection_ID of the final destination, not on the MAC address
- CID is local to the air interface; the final destination is specified at a higher layer.
- No mechanism to allocate a LAN address to a connection_ID
- will be supported through the convergence layer which has not yet been written. Call for contribution is being drafted.

Multicast and LAN-to-LAN bridging support?

- Makes the bridge implementation non-standard and difficult (*please clarify*)
- Will the "spanning tree" algorithm work?
 - Yes, this is above the MAC and so will be addressed in the Ethernet convergence layer. (Common Requirement)
- Introduces significantly delays in bridge
 - please clarify
- Lowers IP performance
 - please clarify

No data polling mechanism (Is supported)

- Data polling needs no apriori knowledge of BW requirements
- Most suitable when combined with IP traffic shaping
- Most suitable for VoIP when VAD is enabled
- Most suitable for external VoIP GW
- Most suitable to support ARQ
- Most suitable to support "Expedited Forwarding" and "Assured forwarding"