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Specific Recommended Channel Multipath Models for 802.16.1

David Falconer, Carleton University, Wei Zhang, and Nader Moayeri, NIST

1. Introduction
 Based on available broadband wireless propagation data and previous literature, several classes of multipath
propagation models were presented at the previous 802.16 Working Group meeting [Fal00], [Xu00], [[Zha00].
The present contribution attempts to fulfill a request that simpler models for evaluation of PHY solutions be
recommended with as few variable parameters as possible. Implications for PHY design – notably design of
preamble sequences for equalizer training – are also suggested.

2. Recommended Multipath Models
2a. Background

Broadband wireless systems of the type envisaged in the 802.16.1 functional requirements document will likely
tend to be deployed with highly directive subscriber antennas in environments offering line of sight
transmission. Nevertheless, an intersymbol interference impairment may occur as a result of multipath –
reflections, scattering or diffraction caused by objects near the line of sight path, which are illuminated by an
antenna beam. These multipath components may change with environmental conditions; for example wet leaves
and flat roofs covered with water have different scattering and reflection properties from their dry counterparts
[Xu99], [Xu00].

The use of highly directive antennas (e.g. ±1° beamwidth), at least at the subscriber’s end, as well as careful
placement of subscriber and base antennas to achieve LOS paths, should limit the maximum delay spread to
moderate values; e.g. below 60 ns. Measurement data and theoretical models using directive antennas at
millimeter wave frequencies supporting this hypothesis include: [ETSI99], [Fal99b],  [Fal00], [Pap97a],
[Tho94], [Vio88],  [Xu99], [Xu00] and [Zha00]. Much longer delay spreads, with relatively dense impulse
response patterns, are typically observed in environments where wide base and subscriber antenna beams and
NLOS paths are the norm [Erc99].

2b The Recommended Multipath Models

Four recommended multipath response models, numbered 0 through 3, are shown in Table 1, corresponding
respectively to a channel with no multipath, one with “good” multipath, one with “medium” multipath, and one
with “bad” multipath.  They are all normalized to have unit energy. These models are intended to be useful for
evaluation of PHY solutions with bandwidths from a few MHz up to about 50 MHz. They are adapted from
responses shown in [ETSI99], [Fal99b],  [Fal00], [Pap97a],  [Vio88],  [Xu99], [Xu00] and [Zha00]. They are
not necessarily typical responses, although their echo delays and amplitudes are similar to those of some
responses that have been reported in the above references. Instead, they are intended to provide varying degrees
of “stress” for evaluation of PHY solutions. Model 1 has a small (-20 dB) echo at a 20 ns. delay.   Model 2 has
-10.5 dB and –20 dB echoes at 0 ns. and 30 ns., respectively. This model exhibits a “non-causal” characteristic
(the first pulse is a precursor, less than the maximum echo, which is at 20 ns.). Precursors were observed in
measurements reported in [Fal99b], and can represent situations where the shortest radio path is attenuated
relative to some slightly longer paths – for example due to partial attenuation or blocking of the LOS path by
heavy localized rain, or to misalignment of the subscriber’s antenna. This model can test the ability of a
moderately complex adaptive equalizer to overcome multipath-induced intersymbol interference. Furthermore,
its non-causal characteristic would provide a more severe test of a decision feedback equalizer than would an
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equivalent causal response. Model 3 is a normalized version of a measured channel reported in [Pap97a].
Because its second echo, at –2.8 dB, is negative and only 3.6 ns. from the main pulse, this channel will cause
severe attenuation (a manifestation of a multipath fade) of signals whose bandwidth is much less than 250 MHz.
The last echo, at –16.2 dB, is at a delay of 15.3 ns.

It is worth noting that good, medium and bad channel models were measured and reported in [Pap97a] and
[Zha00]. The good channel model in those references is the same as our Model 0; i.e. no multipath echo. The
bad channel model is the same as our Model 3, and is also the same as Model “L7” in [ETSI99]. The medium
channel model in [Pap97a] and [Zha00] has a smaller delay spread than our Models 1 and 2, and a smaller
multipath echo than our Model 2. However, the multipath response measurements on which the 3 channel
models of [Pap97a] were based were all done for path lengths of under 0.5 km. Longer paths could admit
somewhat larger delay spreads (see for example [Xu99] and [X00]).

Tap

Number

Tap

Delay (ns.)

Tap

Amplitude

Model 0 1 0 1.0

Model 1 1 0 0.995

2 20 0.0995 exp(-j0.75π)

Model 2 1 0 0.286 exp(-j0.75π)

2 20 0.953

3 30 -0.095

Model 3 1 0 0.804

2 3.6 -0.581

3 15.3 -0.124

Table 1. Recommended multipath models

Frequency response magnitudes of these models are shown in Fig. 1.
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Fig. 1 Frequency responses of Models 1, 2 and 3

As seen in Fig. 1, the bad channel (Model 3) in particular displays a severe frequency response notch at the
channel center frequency, which would result in significant received signal attenuation (multipath fading),
especially for signals with relatively narrow bandwidth about the center frequency. Adaptive equalization can
cure intersymbol interference resulting from the multipath, but for a fixed signal bandwidth, cannot cure the loss
in receiver input SNR due to the frequency notch. This is illustrated in Fig. 2, which shows two curves for each
of Models 1, 2 and 3. The top curve in each pair, labeled “SNRin”, shows the signal-to-noise ratio observed
through a receiver input 25% square root raised cosine filter whose bandwidth is matched to the symbol rate, for
12.5, 25 and 50 Mbaud symbol rates. The input noise level is set so that the input SNR for a perfect (0 dB gain,
frequency nonselective) channel would be 30 dB.  These curves indicate that the multipath in Models 1 and 2
cause negligible or moderate input signal power loss, whereas Model 3 causes severe signal power loss,
especially at lower symbol rates.

The bottom “SNRout” curve of each pair is the signal to noise ratio at the output of a fractionally spaced DFE
with two input samples per symbol. The “noise” at the equalizer output is the minimum mean squared error that
includes residual intersymbol interference as well as noise. The DFE had one feedback tap, and 4, 6 or 8
forward taps, depending on the symbol rate and channel1. Symbol-rate DFE’s with a good timing recovery
algorithm would likely give similar performance with about half the number of forward taps. No attempt was
made to optimize the sample timing, equalizer delay, or number of equalizer taps. An approximate BER

estimate for QPSK is )2/(
2

1
SNRerfcBER = , where SNR is the equalizer output SNR. The SNRin and SNRout

curves for Model 1 coincide. While the sets of curves for  Models 1 and 2 appear close together for effective
equalizers, it should be noted that they would differ significantly in the absence of equalization. For example,

                                                  
1  In the results shown, 4 forward taps were used for Models 1 and  3, while 6 forward  taps were used for Model 2 at 12.5 and 25 Mbaud, and 8
forward taps at 50 Mbaud.
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Model 1 for a symbol rate of 12.5 Mbaud could achieve a SNRout of about 28.6 dB without equalization, while
Model 2 for the same symbol rate would only achieve about 18 dB.

Fig. 2 SNR at receiver input after filtering, and at fractionally-spaced DFE output for Models 1, 2 and 3

3. Time Variability – and Implications for PHY Preambles
3a. Time Variability

There is relatively little measurement data on time variations of fixed broadband millimeter wave radio links
[Pap97b]. However measurements of fading bandwidths due to foliage movement, primarily in NLOS links,
reported in [Naz99] suggest that a typical worst case fading bandwidth for the amplitude of a 30 GHz carrier
could be up to about 200 Hz. This would correspond to a maximum Doppler shift arising from movement of
about 2 m/s.  We know of no data on time variation of the phase of multipath components. In any case it seems
clear that time variation will be extremely slow relative to envisaged bit rates (e.g. one cycle of 200 Hz Doppler
spans 104 bit intervals at 2 Mb/s, and 105 bit intervals at 20 Mb/s. Therefore specification of a precise model of
time variability of multipath seems unnecessary.

3b. Implications for PHY Design

Experience with designing adaptive equalizers for rapidly time-varying radio channels [Lo91] gives the
following rough rule of thumb for characterizing time variation as “fast” or “slow”, with respect to equalizer
adaptation tracking requirements:
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With 200 Hz Doppler, a minimum symbol rate of about 2 Mbaud, and fewer than 8-10 adaptable equalizer taps,
the 0.001 limit is not exceeded, and hence a fast channel tracking capability is not an issue, as it is in some other
cellular systems such as IS-136.

For an 802.16.1 system for example, the time variation is slow enough that the channel impulse response
estimate and/or equalizer coefficients could be updated and then held fixed for a time slot period of at least 100
µsec without the need for further adaptation in that period. For line of sight environments, the channel will
remain fixed for much longer periods. For uplink TDMA transmission, a subscriber transmits a burst once per
uplink frame. For frame lengths on the order of 1 ms. or longer, complete updating (retraining) of equalizer
coefficients or channel estimates would be prudent, using a preamble at the start of the burst. A preamble is a
predetermined sequence of transmitted symbols used for synchronization and for training of equalizer
coefficients. For continuous downlink TDM transmission, a preamble for equalizer training should be inserted
at periodic intervals. The period may be adjusted according to the time variability of the link, but would
generally be expected to be in the range of 100 µs to several ms.

Calculation of equalizer coefficients, using the preamble, and the response of the channel to it, can be done
efficiently by a variety of methods involving direct matrix inversion (DMI) of Wiener-Hopf matrix equations,
or by RLS (recursive least squares) algorithms [Lo91], [Hay96]. Simpler adaptation methods, such as LMS, are
slow, and would require a relatively long preamble. The minimum preamble length, in symbol intervals, to
achieve a mean squared error no more than 3 dB higher than the minimum MSE, required for DMI or RLS-type
solutions is about two times the number of equalizer coefficients [Hay96]; i.e. on the order of 8 to 15 symbol
intervals for 802.16.1 systems [Fal99a]. For TDM downlink transmissions, the preamble could be a distributed
one, interspersed with payload data.
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