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FEC Performance of Concatenated Reed-Solomon and Convolutional Coding
with Interleaving

Jeff Foerster and John Liebetreu

Introduction

The purpose of this contribution is to provide the performance of the concatenated Reed-Solomon and
convolutional code that is described in Mode A of the current draft physical layer standard.  This code is only
applicable for the downstream channel that uses a continuous transmission stream in a frequency division
duplexed (FDD) system.  As a result, it may not be appropriate for a frequency switched division duplexed
(FSDD) system or a time division duplexed (TDD) system, unless the interleaver is shortened and the
convolutional code is terminated through tail biting.  These latter options are not considered here.  In addition, it
may not be appropriate for systems that employ adaptive modulation in the downstream channel, due to the
overall length of the concatenated code and interleaver.  However, this code does provide a strong coding gain
with flexibility in the selection of the code rate and modulation level, as will be shown.  In addition, this code
has been used for years in the digital video broadcasting (DVB) environment [1], and has mature
implementations in silicon that closely approximate the theoretical performance predicted for the code.

Code Description

The code analyzed in this contribution for the downstream channel is shown in the following block diagram.

Conceptual Block diagram of the Concatenated Reed-Solomon/Convolutional Coding Scheme

Following the convergence layer, systematic shortened (204,188) Reed-Solomon encoding is performed on each
received 188 byte packet, with T = 8. This means that 8 erroneous bytes per transport packet can be corrected.
This process adds 16 parity bytes to the transport packet to give a 204 byte codeword.

The Reed-Solomon code has the following generator polynomials:

Code Generator Polynomial: g(x) = (x+µ0)(x+µ1)(x+µ2) ... (x+µ15), where µ= 02hex

Field Generator Polynomial: p(x) = x8 + x4 + x3 + x2 + 1
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The shortened Reed-Solomon code is implemented by appending 51 bytes, all set to zero, before the
information bytes at the input of a (255,239) encoder; after the coding procedure these bytes are discarded.

The convolutional interleaving process is based on the Forney approach, with a depth of I=12.  The interleaved
frame is composed of overlapping error protected packets and shall be delimited by synch. bytes (preserving the
periodicity of 204 bytes).

The interleaver is composed of I branches, cyclically connected to the input byte-stream by the input switch.
Each branch shall be a First In First Out (FIFO) shift register, with depth (M) cells (where M = N/I,
N = 204 = error protected frame length, I =12 = maximum interleaving depth, j = branch index). The cells of the
FIFO shall contain 1 byte, and the input and output switches shall be synchronized, as shown in the diagram
below.

For synchronization purposes, the sync bytes and the inverted sync bytes shall be always routed into the branch
"0" of the interleaver (corresponding to a null delay).

The deinterleaver is similar, in principle, to the interleaver, but the branch indexes are reversed (i.e. j = 0
corresponds to the largest delay). The de-interleaver synchronization is achieved by routing the first recognized
sync byte into the "0" branch.

Conceptual diagram of the convolutional interleaver and de-interleaver

The convolutional code is chosen from the following table of code rates, which are obtained by puncturing a
rate 1/2 constraint length K = 7 code having the following generator vectors G, and puncturing patterns P (0
denotes punctured (deleted) bit).
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Convolutional Code Puncture Patterns

Original code Code rates

1/2 2/3 3/4 5/6 7/8

K G1 G2 P dfree P dfree P dfree P dfree P dfree

7 171oct 133oct

X=1

Y=1

I=X1

Q=Y1

10

X=10

Y=11

I=X1Y2Y3

Q=Y1X3Y4

6

X=101

Y=110

I=X1Y2

Q=Y1X3

5

X=10101

Y=11010

I=X1Y2Y4

Q=Y1X3X5

4

X=1000101

Y=1111010

I=X1Y2Y4Y6

Q=Y1Y3X5X7

3

NOTE: 1=transmitted bit
0 = non transmitted bit

Finally, the bit pairs out of the convolutional encoder are mapped to gray-coded QPSK symbols.

Analytical Performance

The results presented here are primarily based on a theoretical evaluation of the concatenated Reed-Solomon
and convolutional code.  The following analysis has been widely used in the literature (see [2]-[7]) and has been
shown to yield results that very closely approximate simulation results.  The performance of the convolutional
code is approximated truncating the union bound after a significant number of terms, and can be expressed by
the following:
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,

where k is the number of bits input into the encoder, freed  is the free distance of the convolutional code, dc  is

the total number of bit errors that occur in all the incorrect paths in the trellis that differs from the correct path in
exactly d positions, dP  is the probability of choosing an incorrect path that differs from the correct path in

exactly d positions, and N is the number of significant terms used in the calculation.  The values for freed  and

dc  are well tabulated in [2] and [3] for all the punctured codes given above, and are given in the table below for

easy reference.  For coherent QPSK, dP  is given by the following equation:

)(erfc
2

1
cd dP γ= ,

where bc qγγ = , bγ  is the SNR per informatin bit, and q is the overall code rate of the concatenated R-S and

convolutional code.  Assuming interleaving between the Viterbi decoder and the Reed-Solomon decoder is
sufficiently long to break up long bursts of errors out of the Viterbi decoder, which is the case here, the Reed-
Solomon symbol error probability, for symbols in GF(2b) can be upper bounded by the simple union bound
[6][7] as follows:

cbs bPP ≤
where, in this case, b=8.  This symbol error probability can then be used in the following equation to yield an
overall bound on the bit error probability out of the Reed-Solomon decoder [5], as follows:
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where n=204 is the length of the Reed-Solomon code and T=8 is the error correction capability of the code.

The following graphs illustrate the performance of these codes.  Figure 1 shows simulation results for some of
the convolutional codes analyzed here and verifies that the union bound approximation for the bit error rate out
of the convolutional code is accurate for a bit error rate < 10-3.  Figure 2 provides the analytical performance of
all the convolutional codes considered here, and Figure 3 provides the analytical results for the concatenated
Reed-Solomon and convolutional code.  Finally, tables are provided which summarize the performance results
at bit error rates of 10-6 and 10-9.

Figure 1: Comparison between Analysis and Simulation of Convolutional Code Performance
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Figure 2: Performance of Convolutional Codes

Figure 3: Performance of Concatenated Reed-Solomon with Convolutional Code
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Performance Results

Code ½ 2/3 ¾ 5/6 7/8
dfree 10 6 5 4 3
cd [36,0,211,0,1404,0

,11633,0,77433,0,5
02690,0,3322763,0,
21292910,0,1343659
11,0]

[3,70,285,
1276,6160,
27128,1170
19]

[42,201,149
2,10469,629
35,379644]

[92,528,869
4,79453,792
114]

[9,500,7437,105
707,1402743]

0/ηbE for

BER=10-9 at RS
decoder output

3.6250 4 4.5000 5 5.3750

BER out of
convolutional
decoder

2.6120e-004 2.7735e-004 2.6187e-004 2.7833e-004 2.8799e-004

0/ηbE for

BER=10-6 at RS
decoder output

3.3750 3.7500 4.1250 4.7500 5.1250

BER out of
convolutional
decoder

6.6746e-004 6.3073e-004 8.7689e-004 6.2099e-004 6.5700e-004

Comparison Table

Code ½ 2/3 ¾ 5/6 7/8
Aggregate Code
Rate

0.4608 0.6144 0.6912 0.768 0.8064

Uplink/Downlin
k/Both

Downlink Downlink Downlink Downlink Downlink

0/ηbE for

BER=10-6

3.3750 3.7500 4.1250 4.7500 5.1250

0/ηbE for

BER=10-9

3.6250 4 4.5000 5 5.3750

Encoder
Complexity
(QPSK)

11,000 gates
16kb RAM)

One encoder accommodates all rates.  Value in column 2 includes RS
encoder, convolutional encoder, and Forney interleaver specified in [1]

Encoder
Complexity
(64QAM; gates)

No additional encoder complexity;  the encoder is the same as the basic rate 1/2
concatenated encoder.

Decoder
Complexity
(QPSK; gates)

94,000 gates
27kb RAM

One decoder accommodates all rates.  Value in column 2 includes RS
decoder, convolutional decoder, and Forney deinterleaver specified in [1]

Decoder
Complexity
(64QAM; gates)

No additional decoder complexity;  the decoder is the same as the basic rate 1/2
concatenated decoder.

Block size, in
payload data
bits.1

16,544 payload
bits

16,544 payload
bits

16,544 payload
bits

16,544 payload
bits

16,544 payload
bits
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Latency (end to
end), in payload
data bits.1

16,544 payload
bits + decoder
delay

16,544 payload
bits + decoder
delay

16,544 payload
bits + decoder
delay

16,544 payload
bits + decoder
delay

16,544 payload
bits + decoder
delay

1  Although this code is not a block code, it can be viewed as having an approximate block size = I*(I-1)*M.

Support for higher order modulations

The same coding structure can be used to support 8-PSK and 16-QAM modulation using a pragmatic trellis
coding approach, as described in [8].
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