Project	IEEE 802.16 Broadband Wireless Access Working Group < <u>http://ieee802.org/16</u> >
Title	MAC Headers Structure for 802.16 MAC
Date Submitted	2001-01-17
Source(s)	Vladimir YanoverE-Mail: vladimiry@breezecom.co.ilBreezeCOM Ltd.Tel.: +972-36457834Atidim Technology Park, Bldg. 1Fax: +972-36456290P.O. Box 13139, Tel-Aviv 61131,Israel
Re:	This document is submitted in response to IEEE 802.16 Task Group 1 Call for Comments on IEEE 802.16.1/D1-2000 and Task Group 3 Call For Contributions: Proposed MAC Enhancements, Key Characteristics, and Evaluation Criteria: Session #11
Abstract	This document figures the changes needed in the MAC header format of the TG1 MAC to reach the high flexibility needed for further development in the direction of TG1, TG3, TG4
Purpose	The document is submitted within the 802.16 MAC development process, including the issue of TG1 MAC accommodation for TG3, TG4
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) < <u>http://ieee802.org/16/ipr/patents/policy.html</u> >, including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard."
	Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair < <u>mailto:r.b.marks@ieee.org</u> > as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site < <u>http://ieee802.org/16/ipr/patents/letters</u> >.

MAC Headers Structure for 802.16.4

Vladimir Yanover BreezeCOM

1. <u>References</u>

[1] IEEE 802.16.1/D1 - 2000, December 2000. Draft Standard for Air Interface for Fixed

[2] IEEE 802.16p-00/10. Some Issues of Accommodation of TG1 MAC at TG3. By Vladimir Yanover

[3] IEEE 802.16.3p-00/56.Using the TG1 MAC for the TG3 Purposes. V.Yanover, S.Varma, H.Ye

[4] IEEE 802.16.3-01/XX. Reservation Tools for the 802.16.3 MAC. Naftali Chayat, Vladimir Yanover

[5] IEEE 802.16.3-01/XX. "Data Integrity in 802.16.3 MAC Naftali Chayat, Vladimir Yanover, Inbar Anson

[6] Subir Varma. Comments on the use of the TG1 MAC for TG3 Purposes. IEEE 802.16.1c- 00/11

2. Acronyms

ARQ	Automatic Repeat Request
CS PDU	Convergence Sublayer PDU
DA	Discard Acknowledgement
DL	Downlink
FC	Frame Control (field in MAC header [2])
FSN	Fragment Sequence Number
MPDU	MAC PDU
MSDU	MAC Service Data Unit, i.e. CS PDU
MSN	MAC PDU Serial Number
PDU	Protocol Data Unit
UL	Uplink

3. Problems

Today we are not certain about the functions we want to cover by the 802.16 MAC Header fields. This concerns mainly TG3 and TG4: concatenation of the payloads, ARQ, advanced QoS signaling, PHY related signaling, etc. But for the long run it is correct also for TG1 (note the massive changes entering now the 802.11, a year after the release of the 1999 version).

So we need to reserve a space for making detailed decisions later.

4. Proposed Solution

The solution proposed is to employ more flexible MAC header format. "Flexible" means that different types of messages may differ in length and the set of fields included.

It is suggested to keep the first portion of the MAC header of the fixed format so that the PHY Convergence (former Transmission Convergence) layer operations would be easier for HW implementation. This portion is protected by HCS.

All the rest of fields are placed after the HCS and form actually a single body with the MAC payload. Actually this was already done in the recent draft with the ARQ Control Field.

All the other fields are divided into a small number of groups (e.g. EC+EKS+FC+FSN+CSI+PDE relevant only to Data messages) and make the presence of the whole group dependent on the Type value.

Note that the idea of the invocation of the "Type" filed appears also in [6]. The Type value in [6] defines the encoding of the further bits while the format of Data message remains constant.

5. General MAC Message Format

5.1. Constant Part of the MAC Header

The following is the general MAC message format.

Constant part of	Variable part of	MAC Payload	CRC
MAC Header	MAC Header		(optional)

The constant part of MAC Header contains the following fields

Field	Size, bits
Туре	5
Length	11
CID	16
HCS	8

5.2. The Variable Part of the MAC Header

The variable part of the MAC Header contains the following zones (all optional):

Zone	Contains the Fields	Fixed / Variable
	(If not specified, the size of a field the same as in [1])	Size
Data Control	EC, EKS, FC, FSN, PDE, CI	Fixed
CS PDU	CS PDU Serial Number and Retry Number	Fixed
Identification		
GM	GM field, like in the existing draft, but with an additional option of the request field enlarged to 16 bits. Two options exist, short = 8 bits (like in [1]) and long = 16 bits	Fixed
AFB (ARQ Feedback)	One or several ARQ Feedback records and/or ARQ Discard Records	Variable

5.3. ARQ Feedback / Discard Info Format

ARQ Feedback Zone Structure consists of Discard Acknowledgement (DA) records and ARQ Feedback (AFB) records [5].

In the tables below **CID** means the Connection ID where the data was transferred, Last = '1' marks the last AFB / DA in the MAC Message.

The transmitter MAY inform the receiver on the discard decision by sending the discard acknowledgment (DA). Such an acknowledgment should be sent as a part of MAC message through the same connection as the data itself. DA has the following format:

Table 1. DA Format, total = 16 bits

CID	Last	Mode = 101	SerNo
16	1	3	12

This record means that all the MSDUs with the serial numbers < **SerNo**. were discarded by the transmitter. The opposite side MAY answer to this information by sending the Medium AFB with the same Serial Number value.

The ARQ feedback fields (AFB) are used for encoding the results of integrity check performed on the MPDUs. These fields are to be inserted into the MAC messages transferred in the direction opposite to the direction of the connection. The ARQ feedback is transferred using one or several AFB records. The AFB record has the following formats: **Short**, **Medium**, **Long**:

Table 2. AFB Short Format, total = 8 bits

Last	Mode	Reserved
1	3	4

 Table 3. AFB Medium Format, total = 32 bits

CID	Last	Mode	SerNo
16	1	3	12

CID Last Mode SerNo Mask							
16	1	3	12	16			

 Table 4. AFB Long Format, total = 48 bits

Bits in the **Mask** correspond to either CS PDUs or fragments where the value '1' means a positive acknowledgement.

Mode defines the meaning of another sub-fields:

Mode	Meaning	AFB
value		Format
000	Appears in AFB Short format only. Being used by the SS, this AFB means that this SS has successfully received all the DL MAC headers within the latest frame and all the MAC messages addressed to the given connection were received successfully Being used by the BS, this AFB means that the BS has successfully received all the UL MAC headers from the given SS within the latest frame and all the MAC messages addressed to the given connection	Short
001	were received successfully The SerNo value means that all the MSDUs with all the serial numbers < SerNo were successfully received	Medium
010	The SerNo value defines the interval MM+15 of the serial numbers (MSN) of the consecutive MSDUs. The acknowledgements for these MSDUs are provided by the correspondent Mask bits	Long
011	The value SerNo means the MSN of the <u>fragmented</u> MSDU so that the acknowledgements for the <u>fragments</u> are provided by the correspondent Mask bits	Long
100	Same as above plus indication that all the serial numbers < SerNo were successfully received.	Long
101	ARQ Discard Record	
110-111	Reserved	

Thus the AFB record may contain 1, 4 or 6 bytes. The most typical is to use a single 1 byte AFB with Mode = 000 per connection so the overhead of acknowledgments is considerably small. See more details in [5].

6. MAC Message Types

The following is the list of possible types

- Data DL (with the option of piggybacked AFB/DA info)
- Data UL (with the option of piggybacked GM and AFB/DA info)
- BW Request (with the option of piggybacked AFB/DA info)

• Management

There is no separated type for ARQ acknowledgement.

Each of these types has certain set of fields as defined by the following table.

Note. The CSU PDU Identification field is present if and only if the ARQ is enabled for this connection.

Message	Туре	Data	GM	GM	AFB /
function		Control	Short	Long	DA
Management DL	0	-	-	-	Х
Management UL	1	-	-	-	Х
Management UL	2	-	-	Х	Х
Data DL	3	X	-	-	-
Data DL	4	X	-	-	Х
Data UL	5	X	-	-	-
Data UL	6	X	-	-	Х
Data UL	7	X	Х	-	-
Data UL	8	X	Х	-	Х
Data UL	9	X	-	-	-
Data UL	10	X	-	-	Х
Data UL	11	X	-	Х	-
Data UL	12	X	-	Х	Х
BW Request	13	-	-	Х	-
BW Request	14	-	-	-	X
Reserved	15-31				

Therefore this scheme needs total 15 type values of total 32 possible. The rest of them are reserved.

7. Examples

This paragraph figures several possible formats of MAC messages. In these examples the constant format portion (obligatory) is marked green, data control portion - brown, AFB/DA specific portion – blue, Grant Management – yellow, ARQ feedback – magenta. The presence of each portion is defined by the Type field and / or the fact that ARQ is enabled/disabled for the given connection.

A comparison provided with the overhead added by the existing formats [1].

Example #1

Type = Data UL + ARQ Disabled + piggybacked short GM + no piggybacked AFB/DA

Note that the UL Data message header is still of 8 bytes length as in [1]. So actually there is no or little difference between this case and existing header format. This format might be defined obligatory, others optional etc.

Note also that the GM may not be present in all the UL messages and then we have header of only 7 bytes.

	0	1	2	3	4	5	6	7
Constant	Type Length							
Format	Length-cont.							
portion				CID				
				CID-co	ont			
				HCS				
Data Control	EC	EK	S	CSI	CI	F	⁷ C	PDE
	F	SN			Reser	ved		_
Grant				GM				
Management								
MAC								
Payload								
				CS PDU	Data			
CRC	CRC							
CRC-cont.								
	CRC-cont.							
				CRC-co	ont.			

Example #2 Type = Data UL + ARQ Enabled + piggybacked long GM + piggybacked AFB/DA

	0	1	2	3	4	5	6	7	
Constant					Length				
Format	Type Length Length-cont. Length								
portion	CID								
	CID-cont.								
	HCS								
Data Control	EC	EC EKS			CSI CI FC P			PDE	
				Reserved					
CS PDU	Retry count Sequence Number								
Identification	Sequence Number-cont.								
Grant	GM								
Management	GM-cont.								
DA Record	CID								
				CID-co	D-cont.				
	Last = 0		Mode		Reserved				
AFB Record	CID CID-cont								
	Last = 1 Mode SerNo SerNo-cont.								
		ς							
	Mask-cont.								
MAC									
Payload									
				CS PDU	Data				
CRC	CRC								
	CRC-cont.								
	CRC-cont.								
	CRC-cont.								

Example #3

Type = BW Request with long GM

	0	1	2	3	4	5	6	7
Constant				Length				
Format	Length-cont.							
portion	CID							
	CID-cont.							
	HCS							
Grant	GM							
Management	GM-cont.							
CRC	CRC							
	CRC-cont.							
	CRC-cont.							
	CRC-cont.							

The same fields as in [1] are present and the size of the correspondent part is 7 bytes (as in [1]), but here is an additional CRC overhead thus resulting in 11 bytes. Note that this format allows for adding ARQ feedback records. To decrease the overhead, a shortened format may be proposed:

Example #4

Type = Shortened BW Request

0	1	2	3	4	5	6	7		
	Туре								
BR-cont.									
CID									
CID-cont.									
HCS									

Note that this message requires only 5 bytes, but in the price of replacing Length with BR that makes an exception in encoding of the first header portion.