Project	IEEE 802.16 Broadband Wireless Access Working Group < <u>http://ieee802.org/16</u> 2		
Title	Proposed TG3 MAC Document		
Date Submitted	2001-05-10		
Source(s)	Vladimir YanoverE-Mail: vladimiry@breezecom.co.ilBreezeCOM Ltd.Tel.: +972-3645783421 A Habarzel St. Ramat -Fax: +972-36456290Hahayal Tel - Aviv 69710, IsraelFax: +972-36456290		
Re:			
Abstract	First draft for 802.16a MAC section		
Purpose	This document is for the comments and revision by TG3 MAC Group		
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.		
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) < <u>http://ieee802.org/16/ipr/patents/policy.html</u> >, including the statement IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard. Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair < <u>mailto:r.b.marks@ieee.org</u> > as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site < <u>http://ieee802.org/16/ipr/patents/notices</u> >.		

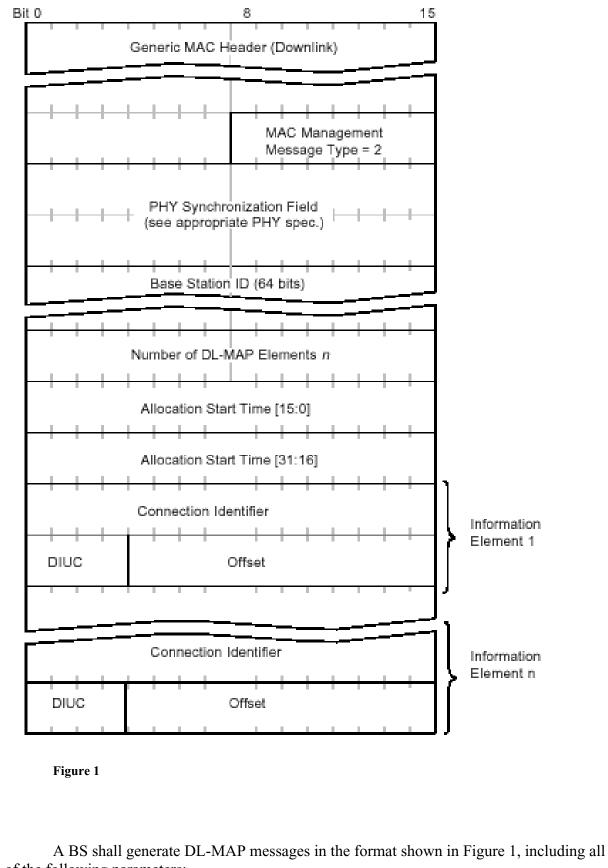
1 2		
3 4		
4 5		
6		
7 8		
9	802.16a Amendment to the 802.16 Standard A	ir
-	Interface for Fixed	
10		
11	Broadband Wireless Access Systems	
12	Draft Document	
13		
14	Table of Contents	
15	<u>1.</u> INTRODUCTION	3
16	<u>2.</u> <u>ARQ</u>	4
17	<u>3.</u> <u>ADVANCED PACKING</u>	4
18	<u>4.</u> <u>MAC-PHY INTERFACE FOR SINGLE CARRIER PHY</u>	4
19 20 21 22	4.1.MAP Messages4.1.1.Downlink MAP (DL-MAP) Message4.1.2.Uplink MAP (UL-MAP) Message4.1.3.Uplink + Downlink MAP	4 6
23 24 25 26 27 28 29	4.2. MAP Relevance and Synchronization 4.2.1. MAP Relevance for Burst PHY Systems 4.2.2. <<<< Physical Layer for TG3 Systems >>> 4.2.2.1. Overview 4.2.2.2. Downlink and Uplink Operation 4.2.2.3. Mode A (Continuous Downlink) 4.2.2.4. Multiplexing and Multiple Access Technique	12 13 13 14 14
30	5. MAC-PHY INTERFACE FOR OFDM PHY	. 28
31 32 33 34 35 36 37 38 39 40	5.1. OFDM PHY Burst Definition and MAP Messages. 5.1.1. Introduction 5.1.2. Basic Parameters 5.1.2.1. Region and PHY Burst. 5.1.2.2. UL Transmission 5.1.2.3. DL Transmissions 5.1.2.4. <<<	28 29 30 32 35 36 36
41 42	5.2. <u>Bandwidth Request Using CDMA Codes in OFDMA(OFDM) Base PHY <<<for to<br="">TG4>>> 36</for></u>	
<u>4</u> 3	5.2.1 Introduction	26

1 2 3 4	5.2.2.Description of the <<< proposed>>> Bandwidth Request mechanism375.2.3.Request Code Grant Interval395.2.4.New UIUC Addition395.2.5.References42
5 6 7 8 9 10 11 12	5.3.Ranging Enhancement42 $5.3.1.$ Introduction42 $5.3.2.$ Background42 $5.3.3.$ $\leq <$ Proposed >>> Ranging Mechanism Overview45 $5.3.3.1.$ Ranging region $\leq <$ indication $>>$ Definition47 $5.3.3.2.$ Update to $6.2.2.2.6$ Section48 $5.3.3.3.$ Change in the RNG-RSP Message48 $5.3.3.4.$ References48
13	<u>6.</u> <u>POWER CONTROL (SUBIR, JOHN)</u> 49
14	<u>7.</u> <u>EASE OF INSTALLATION SUPPORT IN MAC <<< PENDING >>></u> 49
15	8. SUPPORT FOR ADVANCED ANTENNA TECHNOLOGY
16	8.1. <u>Architectural Overview</u>
17	<u>8.2.</u> <u>Definitions</u>
18	8.3. <u>Compatibility model</u>
19 20 21	8.4.MAC Control functions to support Adaptive Arrays508.4.1.Private Uplink/Downlink Channel Descriptor (P-DUCD) message508.4.2.Private MAP (P-MAP) message50
22 23 24	8.5.MAC Utility functions to support Adaptive Arrays518.5.1.CSF-REQ message518.5.2.CSF-REP message52
25 26 27 28 29	Editor s comments <<<
29 30 31 32 33 34	This document was assembled from several contributions submitted to TG3 MAC Group according to the decision of the joint TG3/TG4 MAC Group meeting at Session #12 . The table of contents is not synchronized yet with baseline 802.16 Air Interface document (it will be done after the decision of what are the numbers of the new MAC topics).
35 36 37 38	Some parts of the submissions will not be included into the text of document, for example, because of usage of expressions like in this submission , etc. Such parts appear in red . Editor s comments appear in blue, both of them are marked by <<<>>>
39 40	>>>

41 **<u>1. Introduction</u>**

1	802.16a MAC and PHY have to support point-to-multipoint applications in the range
2	2 to 11 GHz. Radio communications in the above range may be possible in near- and non-
3	line-of-sight situations between a base station and subscriber station. Operation may include
4	partial blockage by foliage, which contributes to signal attenuation and multipath effects.
5	802.16a compliant systems shall be deployable in multiple- cell frequency reuse systems and
6	single cell frequency reuse systems. The range of 802.16.3 radios varies with transmit power,
7	channel characteristics, availability requirement, local regulations and atmospheric conditions
8	(see IEEE 802.16.3-00/02r4 Functional Requirements for the 802.16.3 Interoperability
9	Standard).
10	All the above features request implementation of such PHY functions as support of
11	non-line-of-sight communication, advanced power management, smart antennae support.
12	These functions are absent or insufficient in the baseline 802.16 standard and this is why the
13	802.16a amendment is focused on the definition of the above PHY and MAC functions.
14	For MAC it means that first of all it has to support the abovementioned PHY features
15	and implement the proper interface to PHY. On the other hand, some of these problems may
16	be completely or partially fixed in MAC sublayer using such tools as ARQ, advanced
17	packing, additional scheduling flexibility.
18	
19	
20	<u>2. ARQ</u>
21	[Editorial Group: Vladimir, Subbu, Jacob, Subir, Chet, Demos, Huan Chun]
22	Subor, Subor, Subor, Subor, Subor, Subor, Sterris, Pennos, Frank Charge Second Strain Charge Stra
23	< < 1 chang because of disagreement between the initial contributors / / /
25	
24	3. Advanced Packing
25	[Editorial Group: Vladimir, Subbu, Subir, Demos]
26	Subsequence of disagreement between the initial contributors >>>
~	

29 <u>4. MAC-PHY Interface for Single Carrier PHY</u>


30 31 [Editorial Group: Subir, Vladimir, Itzik, Huan Chun, Subbu, Demos]

32 <<< Submission MAC-PHY Interface by Subir. Possibly, we need here some references to
 33 the correspondent PHY options >>>

- 34 4.1. MAP Messages
- 35

36 4.1.1. Downlink MAP (DL-MAP) Message

37 The Downlink MAP (DL-MAP) message defines the access to the downlink information

of the following parameters:

• Length

1 If the length of the DL-MAP message is a non-integral number of bytes, the Length field in

2 the MAC header is rounded up to the next integral number of bytes. The message must be 3 padded to match this length but the SS must disregard the 4 pad bits.

4 5

6

7

8 9

• PHY Synchronization

The PHY Synchronization field is dependent on the PHY layer used. The encoding of this field is given in each PHY separately.

• Base Station ID

10 The Base Station ID is a 64 bit long field identifying the BS. The Base Station ID may be 11 programmable.

12 13

• Alloc Start Time

Effective start time of the uplink allocation defined by the DL-MAP in units of mini-slots. 14 The start time is relative to the start of a frame in which DL-MAP message is transmitted. 15

16 17

20

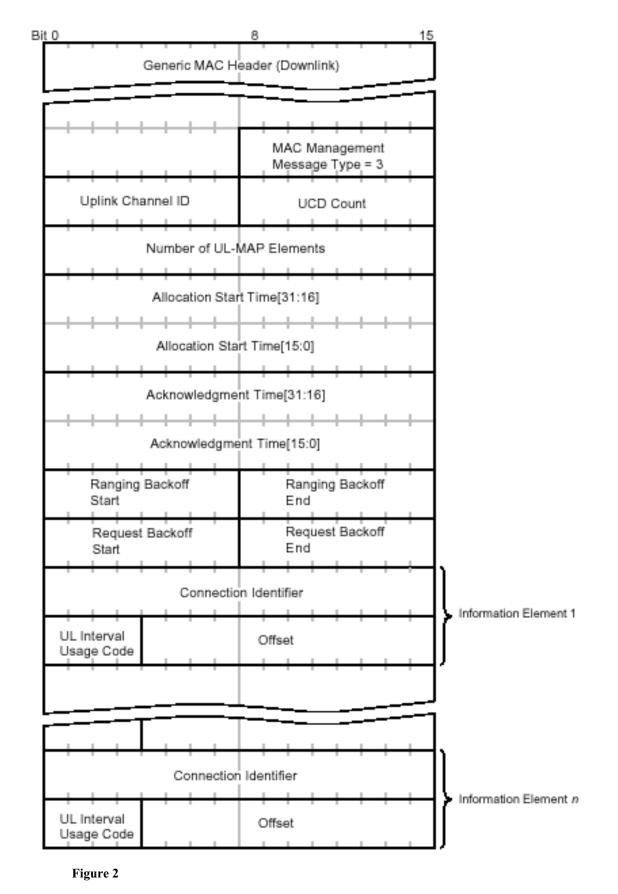
23

24

• Number Of Elements

18 The number of Information Elements that follows. 19

• MAP Information Elements


- Each Information Element (IE) consists of three fields: 21 22
 - 1) Connection Identifier
 - 2) Downlink Interval Usage Code
 - 3) Offset

25 The encoding of remaining portions of the DL-MAP message is PHY dependent and may not be present. Refer to the appropriate PHY specification. 26

- 27
- 28 29

4.1.2. Uplink MAP (UL-MAP) Message

- The Uplink MAP (UL-MAP) message allocates access to the uplink channel. The UL-MAP 30
- message shall be as shown in the following figure 31
- 32

The BS shall generate the UL-MAP with the following parameters:

1 2	• Uplink Channel ID The identifier of the uplink channel to which this Message refers.
3	• UCD Count
4	Matches the value of the Configuration Change Count of the UCD which describes the burst
5	parameters which apply to this map.
6	• Number of Elements
7	Number of information elements in the map.
8	• Alloc Start Time
9	Effective start time of the uplink allocation defined by the UL-MAP in units of mini-slots.
10	The start time is relative to the start of a frame in which UL-MAP message is transmitted
11	(PHY Type = $\{0,1\}$) or from BS initialization (PHY Type = 2).
12	• Ack Time
13	Latest time processed in uplink in units of mini-slots. This time is used by the SS for collision
14	detection purposes. The ack time is relative to the start of a frame in which UL-MAP
15	message is transmitted (PHY Type = $\{0,1\}$) or from BS initialization (PHY Type = 2).
16	Ranging Backoff Start
17	Initial back-off window size for initial ranging contention, expressed as a power of 2. Values
18	of n range $0-15$ (the highest order bits must be unused and set to 0).
19	Ranging Backoff End
20	Final back-off window size for initial ranging contention, expressed as a power of 2. Values
21	of n range $0-15$ (the highest order bits must be unused and set to 0).
22	Request Backoff Start
23	Initial back-off window size for contention data and requests, expressed as a power of 2.
24	Values of n range $0-15$ (the highest order bits must be unused and set to 0).
25	Request Backoff End
26	Final back-off window size for contention requests, expressed as a power of 2. Values of n
27	range $0-15$ (the highest order bits must be unused and set to 0).
28	MAP Information Elements
29	Each Information Element (IE) consists of three fields:
30	1) Connection Identifier
31	2) Uplink Interval Usage Code
32	3) Offset
33	Information elements define uplink bandwidth allocations. Each UL-MAP message shall
34	contain at least one Information Element that marks the end of the last allocated burst. The
35	Information Elements are strictly order within the UL-MAP, as shown in Figure 2.
36	
37	
38	

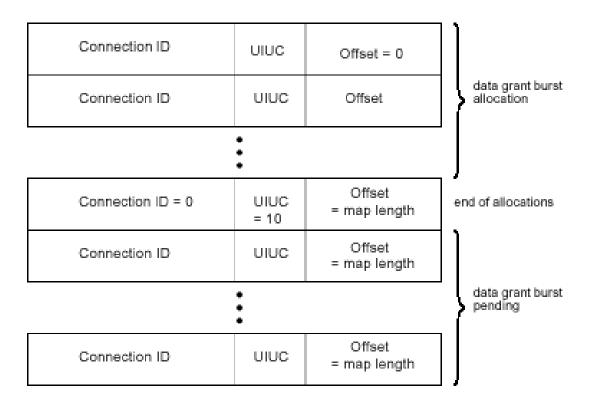


Figure 3

3

4

5 The Connection Identifier represents the assignment of the IE to either a unicast, multicast, or broadcast address. When specifically addressed to allocate a bandwidth grant, the CID may 6 7 be either the Basic CID of the SS or a Traffic CID for one of the connections of the SS. A 8 four-bit Uplink Interval Usage Code (UIUC) shall be used to define the type of uplink access and the burst type associated with that access. A Burst Descriptor shall be included for each 9 Interval Usage Code that is to be used in the UL-MAP. The Interval Usage Code shall be one 10 of the values defined in Table 1. The offset indicates the start time, in units of minislots, of 11 12 the burst relative to the Allocation Start Time given in the UL-MAP message. Consequently the first IE will have an offset of 0. The end of the last allocated burst is indicated by 13 14 allocating a NULL burst (CID = 0 and UIUC = 10) with zero duration. The time instants indicated by the offsets are the transmission times of the first symbol of the burst including 15 16 preamble.

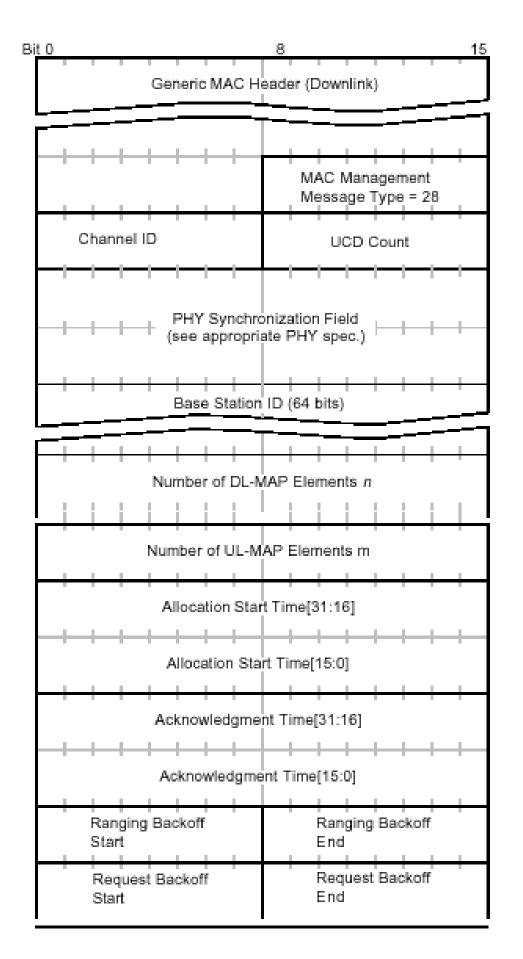

IE Name	Uplink Interval Usage Code (UIUC)	Connection ID	Mini-slot Offset
Reserved	0	NA	Reserved for future use
Request	1	any	Starting offset of REQ region
Initial Maintenance	2	broadcast	Starting offset of MAINT region (used in Initial Ranging)
Station Maintenance	3	unicast	Starting offset of MAINT region (used in Periodic Ranging)
Data Grant Burst Type 1	4	unicast	Starting offset of Data Grant Burst Type assignment If inferred length = 0, then it is a Data Grant Burst Type pending.
Data Grant Burst Type 2	5	unicast	Starting offset of Data Grant Burst Type assignment If inferred length – 0, then it is a Data Grant Burst Type Pending
Data Grant Burst Type 3	6	unicast	Starting offset of Data Grant Burst Type 2 assignment If inferred length = 0, then it is a Data Grant Burst Type pending.
Data Grant Burst Type 4	7	unicast	Starting offset of Data Grant Burst Type 2 assignment If inferred length = 0, then it is a Data Grant Burst Type pending.
Data Grant Burst Type 5	8	unicast	Starting offset of Data Grant Burst Type 3 assignment If inferred length – 0, then it is a Data Grant Burst Type pending.
Data Grant Burst Type 6	9	unicast	Starting offset of Data Grant Burst Type 3 assignment If inferred length = 0, then it is a Data Grant Burst Type pending.
Nuli IE	10	zero	Ending offset of the previous grant. Used to bound the length of the last actual interval allocation.
Empty	11	zero	Used to schedule gaps in transmission
Reserved	11-14	any	Reserved
Expansion	15	expanded UIUC	# of additional 32-bit words in this IE

Table 1—Uplink	Map Informat	ion Elements
	map morma	

5

4.1.3. Uplink + Downlink MAP

For TDD and Burst FDD systems, a single MAP message is defined, that covers both uplink
and downlink directions.

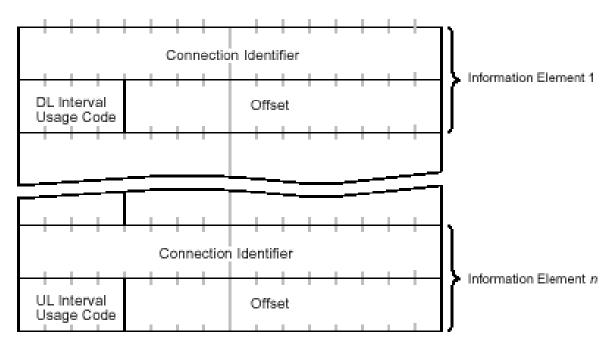


Figure 4

4.2. MAP Relevance and Synchronization

4.2.1. MAP Relevance for Burst PHY Systems

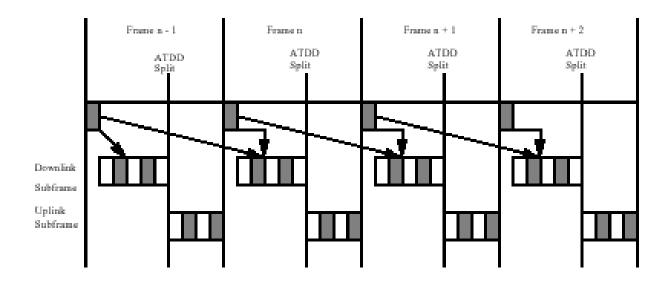
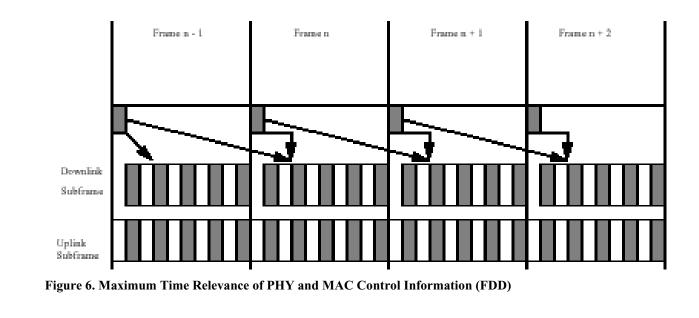



Figure 5. Maximum Time Relevance of PHY and MAC Control Information (TDD)

1 2

4

5 As shown in Figure 5 and 6, the portion of the time axis described by the MAP is a

6 contiguous area whose duration is equal to the duration of a frame. In the example shown in
7 Figure 5, it consists of a portion of the downstream time of the frame in which the MAP is

8 contained, the upstream time in this frame, followed by a portion of the downstream time in

9 the next frame. The fraction of the downstream time in the current frame (or alternatively, the

10 Allocation Start Time), is a quantity that is under the control of the scheduler.

11 12

4

4.2.2. <<< Physical Layer for TG3 Systems >>>

13 <<< This section does not clearly fit the TOC agreed at the meeting of TG3/4 MAC Groups (the agreed title was MAC-PHY interface). Editor recommends to consider changing the title and removing this stuff to another section. In 802.16_D3d1 similar data is placed in the section 6.2.7 MAC support of PHY layers In this case some work should be done to compare the content of this section with the content of 802.16_D3d1/6.2.7 so that we d have to figure only the difference >>>

18 19

20

4.2.2.1. Overview

21 Two modes of operation have been defined for the point-to-multi-point downlink channel:

- 22 one targeted to support a continuous transmission stream format, and
- 23 one targeted to support a burst transmission stream format.
- 24 Having this separation allows each format to be optimized according to its respective design
- 25 constraints, while resulting in a standard that supports various system requirements and
- 26 deployment scenarios.
- 27 In contrast, only one mode of operation is defined for the upstream channel:
- 28 one targeted to support a burst transmission stream format.
- 29 This single mode of operation is sufficient for the upstream, since the upstream transmissions
- 30 are point-to-point burst transmissions between each transmitting subscriber station (SS) and
- 31 each receiving base station (BS).
- 32

4.2.2.2. Downlink and Uplink Operation

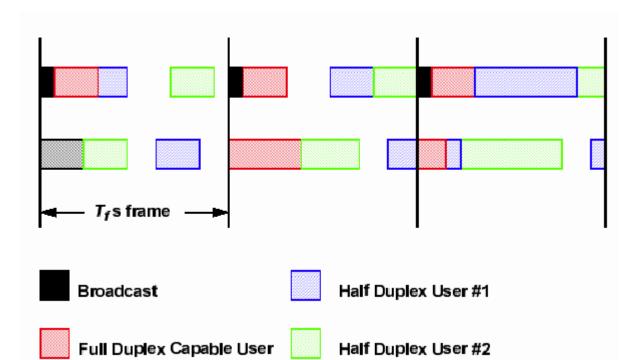
2 Two different downlink modes of operation are defined: Mode A and Mode B. Mode A

- 3 supports a continuous transmission format, while Mode B supports a burst transmission
- 4 format. The continuous transmission format of Mode A is intended for use in an FDD-only
- configuration. The burst transmission format of Mode B supports burst-FDD as well as TDDconfigurations.
- 7 The A and B options give service providers choice, so that they may tailor an installation to
- 8 best meet a specific set of system requirements. Standards-compliant subscriber stations are
- 9 required to support at least one (A or B) of the defined downlink modes of operation.
- 10 A single uplink mode of operation is also defined. This mode supports TDMA-based burst
- 11 uplink transmissions. Standards-compliant subscriber stations are required to support this
- 12 uplink mode of operation.
- 13

14

1

4.2.2.3. Mode A (Continuous Downlink)


15 Mode A is a downlink format intended for continuous transmission. The Mode A downlink

- 16 physical layer first encapsulates MAC packets into a convergence layer frame as defined by
- 17 the transmission convergence sublayer. Modulation and coding which is adaptive to the needs
- 18 of various SS receivers is also supported within this framework.
- 19 Data bits derived from the transmission convergence layer are first randomized. Next, they
- 20 are block FEC encoded. The resulting FEC-encoded bits are mapped to QPSK, 16-QAM, or
- 21 64-QAM signal constellations. Detailed descriptions of the FEC, modulation constellations,
- 22 and symbol mapping formats can be found within the FEC and modulation sections.
- 23 Following the symbol mapping process, the resulting symbols are modulated, and then
- transmitted over the channel.
- 25 In Mode A, the downstream channel is continuously received by many SSs. Due to differing
- 26 conditions at the various SS sites (e.g., variable distances from the BS, presence of
- 27 obstructions), SS receivers may observe significantly different SNRs. For this reason, some
- 28 SSs may be capable of reliably detecting data only when it is derived from certain lower-
- 29 order modulation alphabets, such as QPSK. Similarly, more powerful and redundant FEC
- 30 schemes may also be required by such SNR-disadvantaged SSs. On the other hand, SNR-
- advantaged stations may be capable of receiving very high order modulations (e.g., 64-QAM)
- 32 with high code rates. Collectively, let us define the adaptation of modulation type and FEC to
- 33 a particular SS (or group of SSs) as 'adaptive modulation', and the choice of a particular
- modulation and FEC as an 'adaptive modulation type.' Mode A supports adaptive modulationand the use of adaptive modulation types.
- 36 A MAC Frame Control header is periodically transmitted over the continuous Mode A
- downstream, using the most robust supported adaptive modulation type. So that the start of
- this MAC header may be easily recognized during initial channel acquisition or re-acquisition,
- 39 the PHY inserts an uncoded, TBD (but known) QPSK code word, of length TBD symbols, at
- 40 a location immediately before the beginning of the MAC header, and immediately after a
- 41 Unique Word. (See PHY framing section for more details on the Unique Word). Note that
- 42 this implies the interval between Frame Control headers should be an integer multiple of F
- 43 (the interval between Unique Words).
- 44 Within MAC Frame Control header, a PHY control map (DL_MAP) is used to indicate the
- 45 beginning location of adaptive modulation type groups which follow. Following this header,
- 46 adaptive modulation groups are sequenced in increasing order of robustness. However, the
- 47 DL_MAP does not describe the beginning locations of the payload groups that immediately
- 48 follow; it describes the payload distributions some MAC-prescribed time in the future. This
- $\frac{1}{40}$ del v je neede w se the tEEC decodjng of MAC information (which could be iter tive in

- 1 the case of turbo codes) may be completed, the adaptive data interpreted, and the
- 2 demodulator scheduling set up for the proper sequencing.
- 3 Note that adaptive modulation groups or group memberships can change with time, in order
- 4 to adjust to changing channel conditions.
- 5 In order that disadvantaged SNR users are not adversely affected by transmissions intended
- 6 for other advantaged SNR users, FEC blocks end when a particular adaptive modulation type
- 7 ends. Among other things, this implies that the FEC interleaver depth is adapted to
- 8 accommodate the span of a particular adaptive modulation type.
- 9

1	0
1	1

4.2.2.3.1. Mode B (Burst Downlink)

12 13

Figure 7. Example of burst FDD Bandwidth Allocation

14

Mode B is a downlink format intended for burst transmissions, with features that simplify the support for both TDD systems and half-duplex terminals. A Mode B compliant frame can be configured to support either TDM or TDMA transmission formats; i.e., a Mode B burst may consist a single user's data, or a concatenation of several users' data. What's more, Mode B supports adaptive modulation and multiple adaptive modulation types within these TDMA and TDM formats.

A unique (acquisition) preamble is used to indicate the beginning of a frame, and assist burst demodulation. This preamble is followed by PHY/MAC control data. In the TDM mode, a PHY control map (DL_MAP) is used to indicate the beginning location of different adaptive modulation types. These adaptive modulation types are sequenced within the frame in increasing order of robustness (e.g., QPSK, 16-QAM, 64-QAM), and can change with time in order to adjust to the changing channel conditions.

In the TDMA mode, the DL_MAP is used to describe the adaptive modulation type in
 individual bursts. Since a TDMA burst would contain a payload of only one adaptive
 modulation type, no adaptive modulation type sequencing is required. All TDMA format

payload data is FEC block encoded, with an allowance made for shortening the last codeword
 (e.g., Reed Solomon codeword) within a burst.

The Mode B downlink physical layer goes through a transmission convergence sublayer that inserts a pointer byte at the beginning of the payload information bytes to help the receiver identify the beginning of a MAC packet.

6 Payload data bits coming from the transmission convergence layer are first 7 randomized. Next, they are block FEC encoded. The resulting FEC-encoded bits are mapped 8 to QPSK, 16-QAM, or 64-QAM signal constellations. Detailed descriptions of the FEC, 9 modulation constellations, and symbol mapping formats can be found within the FEC and 10 modulation sections. Following the symbol mapping process, the resulting symbols are

11 modulated, and then transmitted over the channel.

12 *4.2.2.3.1.1. Uplink*

13 The uplink mode supports TDMA burst transmissions from an individual SSs to a BS.
14 This is functionally similar (at the PHY level) to Mode B downlink TDMA operation. As
15 such, for a brief description of the Physical Layer protocol used for this mode, please read the
16 previous section on Mode B TDMA operation.

Of note, however, is that many of the specific uplink channel parameters can be
programmed by MAC layer messaging coming from the base station in downstream
messages. Also, several parameters can be left unspecified and configured by the base station
during the registration process in order to optimize performance for a particular deployment
scenario. In the upstream mode of operation, each burst may carry MAC messages of variable
lengths.

23

4.2.2.4. Multiplexing and Multiple Access Technique

The uplink physical layer is based on the combined use of time division multiple access (TDMA) and demand assigned multiple access (DAMA). In particular, the uplink channel is divided into a number of 'time slots.' The number of slots assigned for various uses (registration, contention, guard, or user traffic) is controlled by the MAC layer in the base station and can vary over time for optimal performance.

As previously indicated, the downlink channel can be in either a continuous (Mode A)
or burst (Mode B) format. Within Mode A, user data is transported via time division
multiplexing (TDM), i.e., the information for each subscriber station is multiplexed onto the
same stream of data and is received by all subscriber stations located within the same sector.
Within Mode B, the user data is bursty and may be transported via TDM or TDMA,
depending on the number of users which are to be borne within in burst.

35

36 4.2.2.4.1. Duplexing Techniques

Several duplexing techniques are supported, in order to provide greater flexibility in spectrum
usage. The continuous transmission downlink mode (Mode A) supports frequency division
duplexing (FDD) with adaptive modulation; the burst mode of operation (Mode B) supports
FDD with adaptive modulation or time division duplexing (TDD) with adaptive modulation.

40 FDD with adaptive modulation of time division duplexing (TDD) with adaptive modulation 41 Furthermore, Mode B in the FDD case can handle (half duplex) subscribers incapable of

42 transmitting and receiving at the same instant, due to their specific transceiver

- 43 implementation.
- 44

1 In a system employing FDD, the uplink and downlink channels are located on separate

2 frequencies and all subscriber stations can transmit and receive simultaneously. The

3 frequency separation between carriers is set either according to the target spectrum

4 regulations or to some value sufficient for complying with radio channel transmit/receive

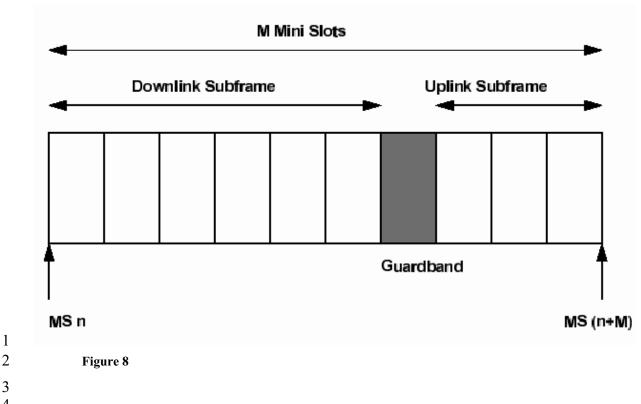
5 isolation and de-sensitization requirements. In this type of system, the downlink channel is

6 (almost) "always on" and all subscriber stations are always listening to it. Therefore, traffic is 7 sent in a broadcast manner using time division multiplexing (TDM) in the downlink channel,

8 while the uplink channel is shared using time division multiple access (TDMA), where the

9 allocation of uplink bandwidth is controlled by a centralized scheduler. The BS periodically

10 transmits downlink and uplink MAP messages, which are used to synchronize the uplink


11 burst transmissions with the downlink. The usage of the mini-slots is defined by the UL-MAP

message, and can change according to the needs of the system. Mode A is capable of adaptivemodulation..

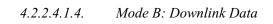
14 *4.2.2.4.1.2. Mode B: Burst Downstream for Burst FDD Systems*

15 A burst FDD system refers to a system in which the uplink and downlink channels are located 16 on separate frequencies but the downlink data is transmitted in bursts. This enables the system to simultaneously support full duplex subscriber stations (ones which can transmit and 17 18 receive simultaneously) and, optionally, half duplex subscriber stations (ones which cannot 19 transmit and receive simultaneously). If half duplex subscriber stations are supported, this 20 mode of operation imposes a restriction on the bandwidth controller: it cannot allocate uplink 21 bandwidth for a half duplex subscriber station at the same time that the subscriber station is 22 expected to receive data on the downlink channel. Frequency separation is as defined in 3.2.1.1.1. Figure 139 describes the basics of the burst 23 FDD mode of operation. In order to simplify the bandwidth allocation algorithms, the uplink 24 25 and downlink channels are divided into fixed sized frames. A full duplex subscriber station 26 must always attempt to listen to the downlink channel. A half duplex subscriber station must 27 always attempt to listen to the downlink channel when it is not transmitting on the uplink 28 channel.

294.2.2.4.1.3.Mode B: Burst Downstream for Time Division Duplexing30(TDD) Systems

6 In the case of TDD, the uplink and downlink transmissions share the same frequency, 7 but are separated in time (Figure 140). A TDD frame also has a fixed duration and contains one downlink and one uplink subframe. The frame is divided into an integer number of 'mini 8 9 slots' (MS), which facilitate the partitioning of bandwidth. These mini slots are in turn made up of a finer unit of time called 'ticks', which are of duration 1 us each. TDD framing is 10 adaptive in that the percentage of the bandwidth allocated to the downlink versus the uplink 11 can vary. The split between uplink and downlink is a system parameter, and is controlled at 12 higher layers within the system. 13

14


4.2.2.4.1.3.1. Tx / Rx Transition Gap (TTG)

The TTG is a gap between the Downlink burst and the Uplink burst. This gap allows time for the BS to switch from transmit mode to receive mode and SSs to switch from receive mode to transmit mode. During this gap, the BS and SS are not transmitting modulated data, but it simply allows the BS transmitter carrier to ramp down, the Tx / Rx antenna switch to actuate, and the BS receiver section to activate. After the TTG, the BS receiver will look for the first symbols of uplink burst. The TTG has a variable duration, which is an integer number of mini slots. The TTG starts on a mini slot boundary.

22

4.2.2.4.1.3.2. Rx / Tx Transition Gap (RTG)

The RTG is a gap between the Uplink burst and the Downlink burst. This gap allows time for the BS to switch from receive mode to transmit mode and SSs to switch from transmit mode to receive mode. During this gap, BS and SS are not transmitting modulated data but simply allowing the BS transmitter carrier to ramp up, the Tx / Rx antenna switch to actuate, and the SS receiver sections to activate. After the RTG, the SS receivers will look for the first symbols of QPSK modulated data in the downlink burst. The RTG is aninteger number of mini slots. The RTG starts on a mini slot boundary.

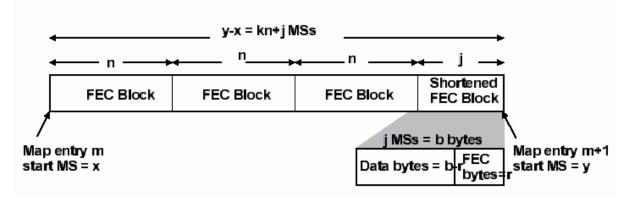


Figure 9. Downlink MAP usage and shortened FEC blocks

5

6 The downlink data sections are used for transmitting data and control messages to specific

7 SSs. This data is always FEC coded and is transmitted at the current operating modulation of

8 the individual SS. In the burst mode cases, data is transmitted in robustness order in the TDM

9 portion. In a burst TDMA application, the data is grouped into separately delineated bursts,

10 which do not need to be in modulation order. The DL-MAP message contains a map stating

11 at which mini slot the burst profile change occurs. If the downlink data does not fill the entire

12 downlink sub-frame and Mode B is in use, the transmitter is shut down. The DL-MAP

provides implicit indication of shortened FEC (and/or FFT) blocks in the downlink.
Shortening the last FEC block of a burst is optional (see 11.1.2.2). The downlink map

15 indicates the number of MS, p allocated to a particular burst and also indicates the burst type

16 (modulation and FEC). Let n denote the number of MS required for one FEC block of the

17 given burst profile. Then, p = kn + j, where k is the number of integral FEC blocks that fit in

18 the burst and j is the number of MS remaining after integral FEC blocks are allocated. Either

19 k or j, but not both, may be zero. j denotes some number of bytes b. Assuming j is not 0, it

20 must be large enough such that b is larger than the number of FEC bytes r, added by the FEC

21 scheme for the burst. The number of bytes available to user data in the shortened FEC block

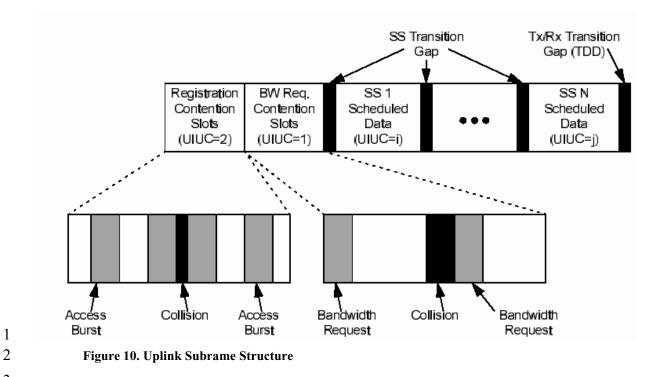
is b - r. These points are illustrated in Figure 141. Note that a codeword may not possess lessthan 6 information bytes.

In the TDM mode of operation, SSs listen to all portions of the downlink burst to which they
are capable of listening. For full-duplex SSs, this implies that a SS shall listen to all portions

that have a adaptive modulation type (as defined by the DIUC) which is at least as robust as

that which the SS negotiates with the BS. For half-duplex SSs, the aforesaid is also true, but

28 under an additional condition: an SS shall not attempt to listen to portions of the downlink


burst that are coincident---adjusted by the SS's Tx time advance---with the SS's allocated
uplink transmission, if any.

31 In the burst TDMA mode of operation, bursts are individually identified in the DL_MAP.

32 Hence, a SS is required to turn on its receiver only in time to receive those bursts addressed

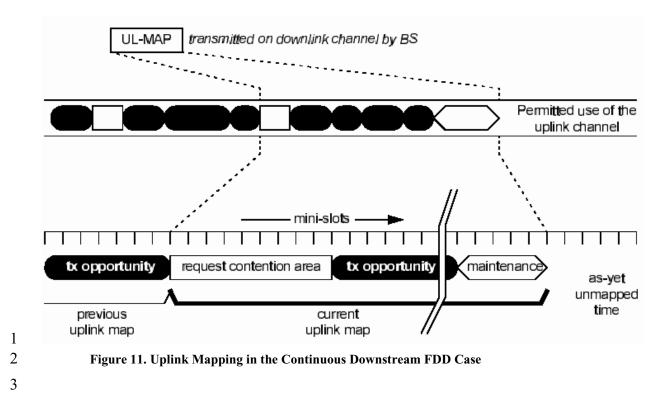
to it. Unlike the TDM mode, there is no requirement that the bursts be ordered in order of

- 34 increasing robustness.
- 35 4.2.2.4.2. Uplink Burst Subframe Structure

1

4 The structure of the uplink subframe used by the SSs to transmit to the BS is shown in Figure

- 5 142. There are three main classes of bursts transmitted by the SSs during the uplink 6 subframe:
- 7 a) Those that are transmitted in contention slots reserved for station registration.
- 8 b) Those that are transmitted in contention slots reserved for response to multicast and
- 9 broadcast polls for bandwidth needs.
- 10 c) Those that are transmitted in bandwidth specifically allocated to individual SSs.


11

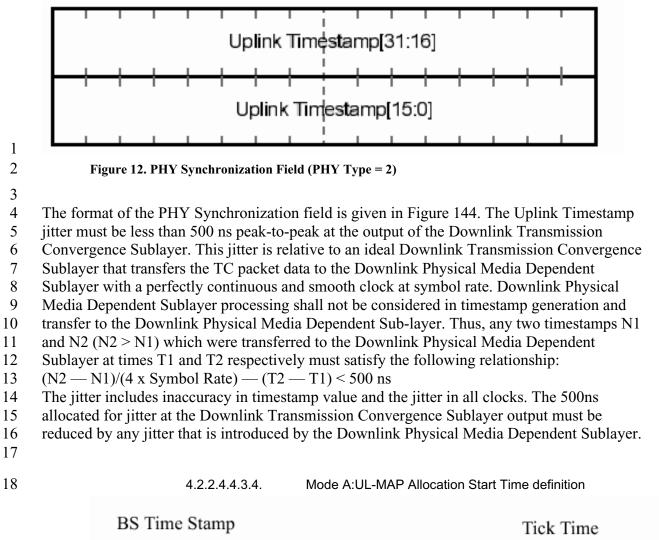
4.2.2.4.2.1. Mode A and Mode B: Uplink Burst Profile Modes

12 The uplink uses adaptive burst profiles, in which different SSs are assigned different

13 modulation types by the base station. In the adaptive case, the bandwidth allocated for

- 14 registration and request contention slots is grouped together and is always used with the
- 15

4 parameters specified for Request Intevals (UIUC=1) (Remark: It is recommended that UIUC=1 will provide the most robust burst profile due to the extreme link budget and 5 6 interference conditions of this case). The remaining transmission slots are grouped by SS. 7 During its scheduled bandwidth, an SS transmits with the burst profile specified by the base 8 station, as determined by the effects of distance, interference and environmental factors on 9 transmission to and from that SS. SS Transition Gaps (STG) separate the transmissions of the various SSs during the uplink subframe. The STGs contain a gap to allow for ramping down 10 of the previous burst, followed by a preamble allowing the BS to synchronize to the new SS. 11 12 The preamble and gap lengths are broadcast periodically in the UCD message. Shortening of FEC blocks in the uplink is identical to the handling in the downlink as described in 3.2.2.1.4. 13 14 4.2.2.4.3. **PHY SAP Parameter Definitions** 15 TBD 16 17 4.2.2.4.4. Downlink Physical Layer 18 This section describes the two different downlink modes of operation that have been adopted for use in this proposal. Mode A has been designed for continuous transmission, while a 19 Mode B has been designed to support a burst transmission format. Subscriber stations must 20


- 21 support at least one of these modes.
- 22 *4.2.2.4.4.1. Physical layer type (PHY type) encodings*

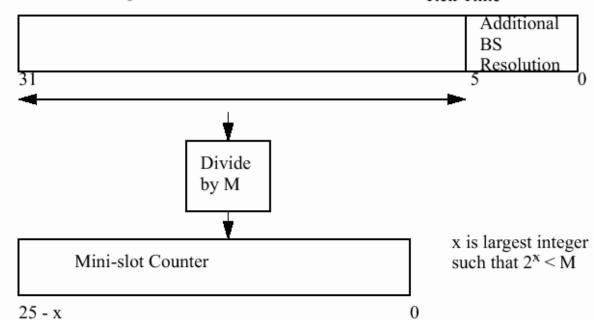

The value of the PHY type parameter (X.X.X) as defined must be reported as shownin the Table 1.

Table 1. PHY type parameter encoding

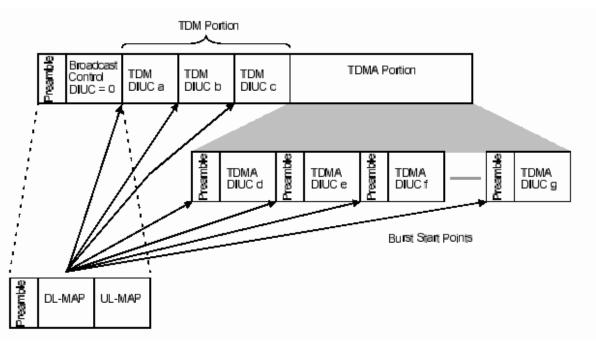
Mode	Value	Comment
Mode B (TDD)	0	Burst Downlink in TDD Mode
Mode B (FDD)	1	Burst Down]ink in FDD Mode
ModeA (FDD)	2	Continuous down]ink

4 5 6 7 8 9	4.2.2.4.4.2. Mode A: Continuous Downlink Transmission This mode of operation has been designed for a continuous transmission stream, using a single modulation/coding combination on each carrier, in an FDD system. The physical media dependent sublayer has no explicit frame structure. Where spectrum resources allow, multiple carriers may be deployed, each using different modulation/coding methods defined here.
10	4.2.2.4.4.3. Downlink Mode A: Message field definitions
11 12 13 14 15	4.2.2.4.4.3.1. Downlink Mode A: Required channel descriptor parameters The following parameters shall be included in the UCD message: TBD
16 17 18 19	4.2.2.4.4.3.2. Mode A: Required DCD parameters The following parameters shall be included in the DCD message: TBD
20 21 22	4.2.2.4.4.3.2.1. Downlink Mode A: DCD, Required burst decriptor parameters TBD.
23 24	4.2.2.4.4.3.3. Mode A: DL-MAP For PHY Type = 2, no additional information follows the Base Station ID field.
25 26 27 28	4.2.2.4.4.3.3.1. Mode A: DL-MAP PHY Synchronization Field definition

20 The Alloc Start Time is the effective start time of the uplink allocation defined by the

21 UL-MAP or DL_MAP in units of mini-slots. The start time is relative to the time of BS

22 initialization (PHY Type = 5). The UL-MAP/DL_MAP Allocation Start Time is given as an


1 offset to the Time Stamp defined in 3.2.4.3.3.1. Figure 145 illustrates the relation of the Time 2 Stamp maintained in the BS to the BS Mini-slot Counter. The base time unit is called a tick and is of duration 1 us, independent of the symbol rate, and is counted using a 26 bit counter. 3 4 The additional BS resolution is of duration (1 tick/ 64) = 15.625 ns. The Mini-Slot count is 5 derived from the tick count by means of a divide by M operation. Note that the divisor M is 6 not necessarily a power of 2. 7 For arbitrary symbol rates, the main constraint in the definition of a mini slot, is that 8 the number of symbols per mini slot be an integer. For example given a symbol rate of R Symbols/tick, and M ticks/mini-slot, the number of symbols per mini-slot N, is given by N = 9 10 MR. In this situation, M should be chosen such that N is an integer. In order to accommodate a wide range of symbol rates, it is important not to constrain M to be a power of 2. Since the 11 additional BS resolution is independent of the symbol rate, the system can use an uniform 12 13 time reference for distance ranging. 14 In order to show that the time base is applicable to single carrier and OFDM symbol rates, consider the following examples: (a) Single Carrier System - Given a symbol rate of 15 16 4.8 Msymbols/s (on a 6MHz channel), if the mini-slot duration is chosen to be 10 ticks (i.e., M = 10), then there are 48 symbols/mini-slot. Given 16QAM modulation this corresponds to 17 a granularity of 24 bytes/mini-slot (b) OFDM System - Given an OFDM symbol time of 50 18 19 us, the mini-slot duration is also chosen to be 50 ticks (i.e., M = 50). In this case there is only a single symbol per mini-slot. 20 21 4.2.2.4.4.3.5. **UL-MAP Ack Time definition** 22 The Ack Time is the latest time processed in uplink in units of mini-slots. This time is 23 used by the SS for collision detection purposes. The Ack Time is given relative to the BS initialization time. 24 25 26 4.2.2.4.4.4. Mode B: Burst Downlink Transmission 27 This mode of operation has been designed to support burst transmission in the downlink channel. In particular, this mode is applicable for systems using adaptive modulation in an 28 29 FDD system or for systems using TDD, both of which require a burst capability in the 30 downlink channel. In order to simplify phase recovery and channel tracking, a fixed frame time is used. At the beginning of every frame, a preamble is transmitted in order to allow for 31 32 phase recovery and equalization training. A description of the framing mechanism and the structure of the frame is further described in 3.2.4.5.1. 33 34 4.2.2.4.4.4.1. Mode B: Downlink Framing In the burst mode, the uplink and downlink can be multiplexed in a TDD fashion as described 35 in 3.2.2.1.3, or in an FDD fashion as described in 3.2.2.1.2. Each method uses a frame with a 36 37 duration as specified in 3.2.5.1. Within this frame are a downlink subframe and an uplink subframe. In the TDD case, the downlink subframe comes first, followed by the uplink 38 39 subframe. In the burst FDD case, uplink transmissions occur during the downlink frame. In both cases, the downlink subframe is prefixed with information necessary for frame 40 41 synchronization. 42 The available bandwidth in both directions is defined with a granularity of one mini slot 43 (MS). The number of mini slots within each frame is independent of the symbol rate. The frame size is selected in order to obtain an integral number of MS within each frame. For 44 45 example, with a 10 us MS duration, there are 500 MS within a 5-ms frame, independent of 46 the symbol rate.

1 The structure of the downlink subframe used by the BS to transmit to the SSs, using Mode B, 2 is shown in Figure 156. This burst structure defines the downlink physical channel. It starts 3 with a Frame Control Header, that is always transmitted using the most robust set of PHY 4 parameters. This frame header contains a preamble used by the PHY for synchronization and 5 equalization. It also contains control sections for both the PHY and the MAC (DL MAP and 6 UL_MAP control messages) that is encoded with a fixed FEC scheme defined in this 7 standard in order to ensure interoperability. The Frame Control Header also may periodically 8 contain PHY Parameters as defined in the DCD and UCD. 9 10 There are two ways in which the downstream data may be organized for Mode B systems: 11 12 Transmissions may be organized into different modulation and FEC groups, where the • modulation type and FEC parameters are defined through MAC layer messaging. The 13 PHY Control portion of the Frame Control Header contains a downlink map stating 14 the MSs at which the different modulation/FEC groups begin. Data should be 15 16 transmitted in robustness order. For modulations this means QPSK followed by 16-17 QAM, followed by 64-QAM. If more than 1 FEC is defined (via DCD messages) for 18 a given modulation, the more robust FEC/modulation combination appears first. Each SS receives and decodes the control information of the downstream and looks for 19 20 MAC headers indicating data for that SS. 21 Alternatively, transmissions need not be ordered by robustness. The PHY control ٠ portion contains a downlink map stating the MS (and modulation/FEC) of each of the 22 23

- TDMA sub-bursts. This allows an individual SS to decode a specific portion of the downlink without the need to decode the whole DS burst. In this particular case, each transmission associated with different burst types is required to start with a short preamble for phase re-synchronization.
- 27

28 There is a Tx/Rx Transition Gap (TTG) separating the downlink subframe from the

- 29 uplink subframe in the case of TDD
- 30 31

1 2 3 4 5 6 7 8	4.2.2.4.4.2. Frame Control The first portion of the downlink frame is used for control information destined for all SS. This control information must not be encrypted. The information transmitted in this section is always transmitted using the well known DL Burst Type with UIUC=0. This control section must contain a DL-MAP message for the channel followed by one UL-MAP message for each associated uplink channel. In addition it may contain DCD and UCD messages following the last UL-MAP message. No other messages may be sent in the PHY/MAC Control portion of the frame.
9 10 11 12	4.2.2.4.4.3. Downlink Mode B: Required DCD parameters The following parameters shall be included in the DCD message: TBD
13 14 15 16 17	4.2.2.4.4.3.1. Downlink Mode B: DCD, Required burst decriptor parameters Each Burst Descriptor in the DCD message shall include the following parameters: TBD
18 19 20 21	4.2.2.4.4.4. Downlink Mode B: Required UCD parameters The following parameters shall be included in the UCD message: TBD
22 23 24 25 26	4.2.2.4.4.5. Downlink Mode B: DL-MAP elements For PHY Type = $\{0, 1\}$, a number of information elements as defined as in Figure 27 follows the Base Station ID field. The MAP information elements must be in time order. Note that this is not necessarily IUC order or connection ID order.
27 28 29 30	4.2.2.4.4.6. Allowable frame times Table 3 indicates the various frame times that are allowed for the current downlink Mode B physical layer. The actual frame time used by the downlink channel can be determined by the periodicity of the frame start preambles

0x01 0x02	Frame time (T _F)	Units
	0.5	ms
	1	ms
0x03	1.5	ms
0x04	2.0	ms
0x05	2.5	ms
0x06	3.0	ms
0x07	3.5	ms
0x08	4.0	ms
0x09	4.5	ms
0x0A	5.0	ms
	Timestamp[3	31:16]
	+ + + + + + + + + + + + + + + + + + + +	-
	Timestamþ[15:0]
	chronization Field (PHY	$(1 \text{ vne} = \{0, 1\})$
Figure 14. PHY Syn		((,,,))
format of the PHY S		is given in Figure 158. The
format of the PHY S or must be less than 50 overgence Sublayer. T	00 ns peak-to-peak at This jitter is relative to	is given in Figure 158. The the output of the Downlin o an ideal Downlink Trans
format of the PHY S must be less than 50 vergence Sublayer. T	00 ns peak-to-peak at This jitter is relative to	is given in Figure 158. The the output of the Downlin

Table 2. Allowable Frame Times

9 10

8

2 3 4

5

6

7

plink Timestamp 11

12 ransmission

ssion Convergence 13

14 Dependent

nlink Physical 15 generation and 16

17

transfer to the Downlink Physical Media Dependent Sub-layer. Thus, any two timestamps N1 18 and N2 (N2 > N1) which were transferred to the Downlink Physical Media Dependent

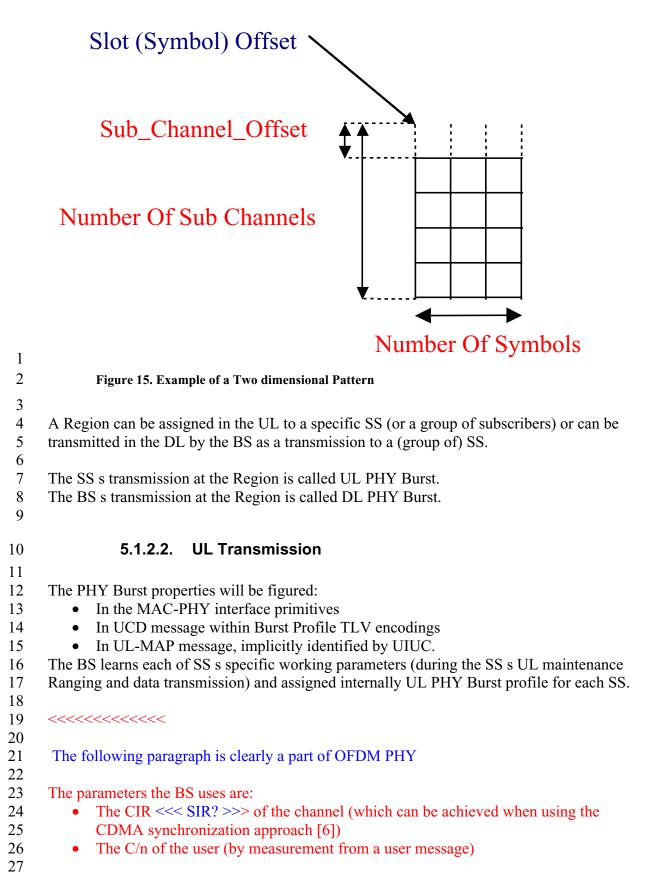
Sublayer at times T1 and T2 respectively must satisfy the following relationship: 19

(N2 - N1)/(4 x Symbol Rate) - (T2 - T1) < 500 ns20

21

The jitter includes inaccuracy in timestamp value and the jitter in all clocks. The 500ns 22

allocated for jitter at the Downlink Transmission Convergence Sublayer output must be 23


24 reduced by any itter that is introduced by the Downlink Physical Media Dependent Sublaver.

1 2 3 4 5 6 7 8 9 10 11	4.2.2.4.4.8. UL-MAP Allocation Start Time definition The Alloc Start Time is the effective start time of the uplink allocation defined by the UL-MAP or DL_MAP in units of mini-slots. The start time is relative to the time of BS initialization (PHY Type = 5). The UL-MAP/DL_MAP Allocation Start Time is given as an offset to the Time Stamp defined in 3.2.4.3.3.1. Figure 145 illustrates the relation of the Time Stamp maintained in the BS to the BS Mini-slot Counter. The base time unit is called a tick and is of duration 1 us, independent of the symbol rate, and is counted using a 26 bit counter. The additional BS resolution is of duration (1 tick/ 64) = 15.625 ns. The Mini-Slot count is derived from the tick count by means of a divide by M operation. Note that the divisor M is not necessarily a power of 2. For arbitrary symbol rates, the main constraint in the definition of a mini-slot, is that the				
12 13	number of symbols per mini-slot be an integer. For example given a symbol rate of R Symbols/tick, and M ticks/mini-slot, the number of symbols per mini-slot N, is given by N =				
14 15 16 17	MR. In this situation, M should be chosen such that N is an integer. In order to accommodate a wide range of symbol rates, it is important not to constrain M to be a power of 2. Since the additional BS resolution is independent of the symbol rate, the system can use an uniform time reference for distance ranging.				
18 19 20 21 22 23 24 25	In order to show that the time base is applicable to single carrier and OFDM symbol rates, consider the following examples: (a) Single Carrier System - Given a symbol rate of 4.8 Msymbols/s (on a 6MHz channel), if the mini-slot duration is chosen to be 10 ticks (i.e., $M = 10$), then there are 48 symbols/mini-slot. Given 16QAM modulation this corresponds to a granularity of 24 bytes/mini-slot (b) OFDM System - Given an OFDM symbol time of 50 us, the mini-slot duration is also chosen to be 50 ticks (i.e., $M = 50$). In this case there is only a single symbol per mini-slot.				
26 27 28 29 30	4.2.2.4.4.4.9. UL-MAP Ack Time definition The Ack Time is the latest time processed in uplink in units of mini-slots. This time is used by the SS for collision detection purposes. The Ack Time is given relative to the BS initialization time.				
31	5. MAC-PHY Interface for OFDM PHY				
32 33 34	[Editorial Group: Subir, Vladimir, Itzik, Huan Chun, Subbu, Demos]				
35	5.1. OFDM PHY Burst Definition and MAP Messages				
36 37 38	<				
39 40 41 42	5.1.1. Introduction This section <<< contribution >>> describes the MAC-PHY considerations and MAC-PHY information exchange needed for support OFDMA/OFDM based PHY layer.				
43	The OFDMA access scheme presented in [1] defines an access scheme of a two				

45 The OFDWA access scheme presented in [1] defines an access scheme 44 dimensional grid that combines time and frequency division access technique.

1	<<< The 802.16.1 MAC layer needs to be enhanced\updated to support					
2	OFDMA\OFDM access scheme while saving the main working principles of the MAC layer.					
3	>>>					
4						
5	In a MAC protocol that supports OFDMA PHY layer (like one presented in [1]), the					
6	concept of a sub-channel should be supported, as presented in [4], mini-slot duration should					
7	last for the time duration of a full OFDM symbol and should be used as a time symbol					
8	reference. In addition, for each time symbol reference, a sub-channel reference should be					
9	provided for an OFDMA access resolution.					
10						
11	Each of the Uplink and Downlink symbols are built from subcarriers, which are					
12	divided statically into sub-channels that are groups of 53 (48 useful) sub-carriers. A sub-					
13	channel does not necessarily contain consequent subcarriers.					
14						
15	The OFDMA defines a slot as a pair $\{N,m\}$ that represents a combination of an					
16	OFDM time symbol (N) and number of a sub-channel (m).					
17	In each cell a single FFT size is used					
18	54.0 Decie Devenetore					
19 20	5.1.2. Basic Parameters					
20 21	This section defines OFDMA related basic terminology and relevant perspectors					
21	This section defines OFDMA related basic terminology and relevant parameters.					
22	5.1.2.1. Region and PHY Burst					
23	For both Uplink and Downlink transmissions, several consequent sub-channels may					
24	be aggregated for several consequent symbol duration intervals (OFDM Symbols). Such an					
25	aggregation is figured by a rectangle Region at the Subcarrier(frequency)-Time domain.					
26						
27	_Figure 15 illustrates an allocation pattern instance of a Region					
28						

Example of allocated rectange

- 1 The basic suggested (partial) profiles for the uplink transmission can be summarized in the
- 2 following table:
- 3

Profile	0	1	2	3
C/n dB	3-6	6-9	9-12	12-17
Modulation+	QPSK	QPSK	QAM16	QAM16
code Rate	1/2	3/4	1/2	3/4

5 The defined values are used for a reference, bad CIR can cause the BS to chose lower profile

6 or allocation of fewer Sub-Channels enables the BS to choose higher profile.

8

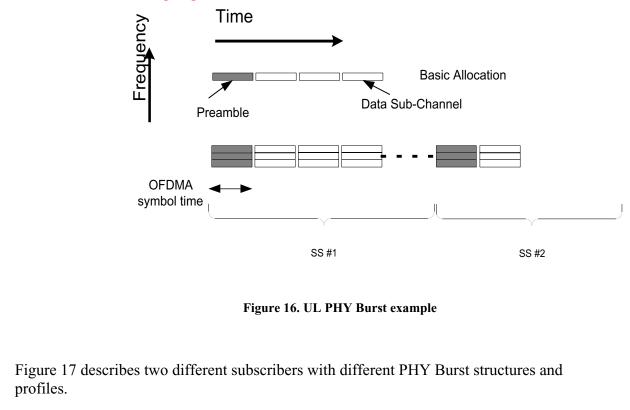
9 The UL MAP IEs shall have the UIUC that represent the relevant profile that determined by 10 the BS.

11

12 Figure 16 describes the logical structure of UL PHY Burst.

13

16 17 18


19 20 21

22

23

14 <u><<< Note</u>: for the next figures, the size (number of symbols) of the preamble is still under

15 discussion of the PHY group. >>>

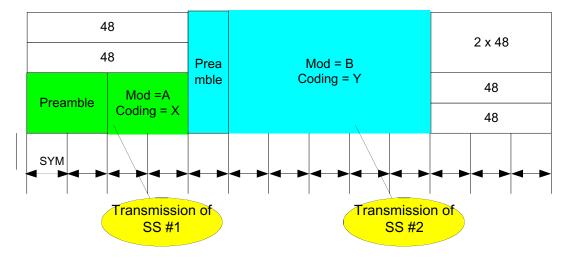
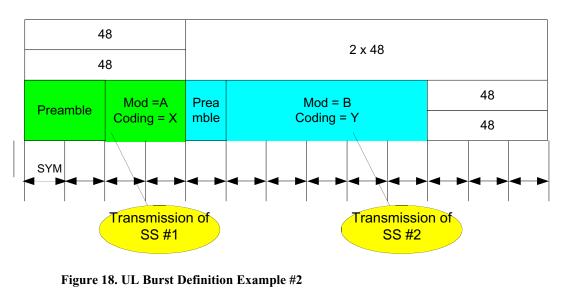



Figure 17. UL Burst Definition Example #1

- 3 Figure 18 describes two different subscribers with similar PHY Burst structure and with
- 4 different profiles
- 5

7 8

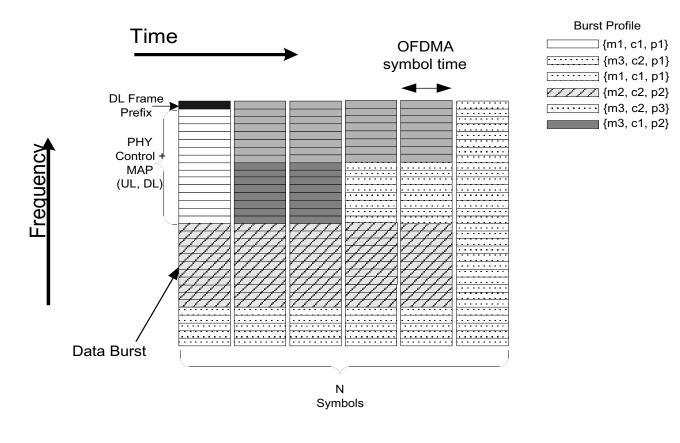
10

6

9

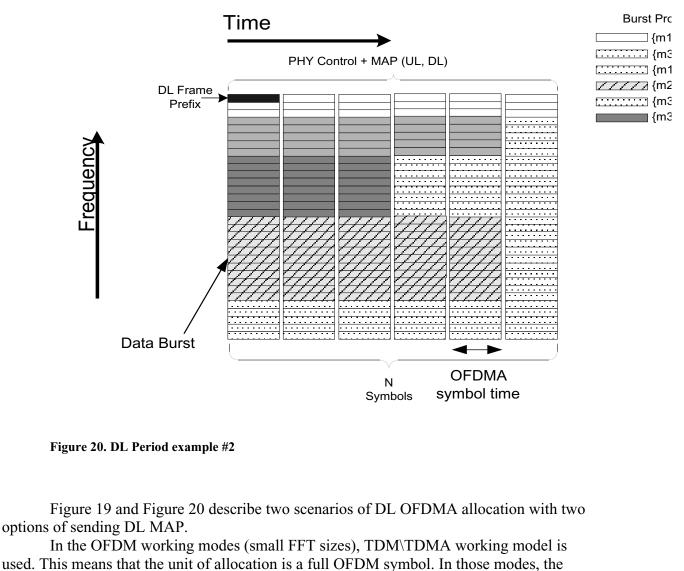
5.1.2.3. DL Transmissions

- The DL PHY Burst properties will be figured:
- 11 In the MAC-PHY interface primitives
- 12 In DCD message within Burst Profile TLV encodings
- 13 In DL-MAP message, implicitly identified by DIUC.
- In the RNG-RSP or DBTC-RSP messages, implicitly identified by the Downlink Burst
 Type.
- 16 17


```
The set of DL PHY Burst parameters is specified in <Reference to OFDM PHY relevant section> and includes at least:
```

- 18 relevant section> and include19 Modulation type
- $20 \bullet FEC type$
- 20 FEC type21 Tx Power
- 21 22

The forward adaptive profiles are relevant in the Bursty working modes (FDD-B and 1 2 TDD). 3


The SS requests from the BS a specific DL PHY Burst type (using the DBTC-REQ or 4 RNG-REQ messages), the BS will acknowledge the user with a downstream working mode 5 (using the DBTC-RSP or RNG-RSP messages). 6

7

8 9

10 Figure 19. DL Period example #1

9 used. This means that the unit of allocation is a full OFDM symbol. In those m
 10 frame control information (DL/UL MAP) shall be sent on the first Symbol(s).

In the high FFT sizes modes, OFDMA working model is used. This means that the
unit of allocation is a Burst (which is a combination of a sub-channels and time symbols). In
those modes, there are two possibilities to transmit the DL\UL MAP:

- To take advantage of the option of forward power control, and robust transmission of frame control information, the transmission of the DL\UL MAP can be done by using 1-2 sub-channels for the duration of the whole frame while power boosting the used carriers (see _Figure 6)
 To use the basic method of the OFDM case, but with size optimization. This means
 - To use the basic method of the OFDM case, but with size optimization. This means that the DL\UL MAP shall be transmitted at the beginning of the frame, using all or part of the sub-channels.

The frame control information should be transmitted in a deterministic pre-defined (and robust) configuration, therefore indication about the frame control information should be defined.

To be able to support a generic formation of frame control message in the downlink in the context of OFDMA\OFDM PHY modes, we propose the notion of *DL Frame prefix*.

27

19

20

21

1 2 3

4 5 6

7

1	DL Frame Prefix is one symbol long; it is transmitted at the well-known
2	modulation/coding and occupies the well-known set of sub-carriers, e.g. the first N x 48 (for
3	the FFT-64 always $N = 1$, for FFT-256 OFDM always $N = 4$ or For FFT-2048 OFDMA
4	always N=1 etc.).
~	

5 It contains the information on the modulation/coding and formation of the DL frame
6 control information (DL\UL MAP messages) relevant to the next frame or to the same frame.
7 Figure 1 describes the structure of DL Frame Prefix:

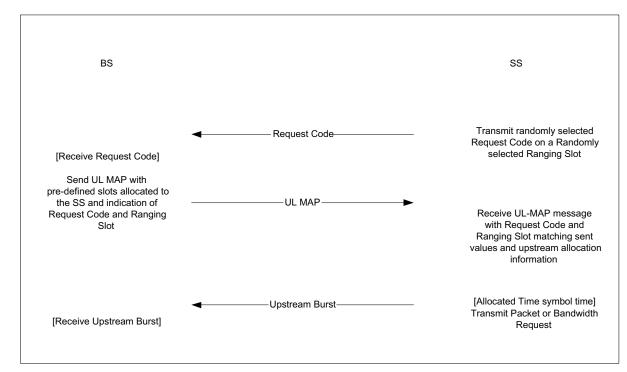
0				
Rate_ID (4)	Symbols (6)	Sub_Channels (6)	HCS(8)	

10

9

8

Figure 1. DL Frame Prefix Structure


11	Rate_ID: Enumerated field that describes the transmission parameters of the DL\UL
12	MAP messages.
13	Symbols: Number of time symbols dedicated to the DL\UL MAP message.
14	Sub_Channels: Number of sub-channels dedicated to the DL\UL MAP message.
15	HCS: An 8-bit Header Check Sequence used to detect errors in the DL Frame Prefix.
16	The generator polynomial is $g(D) = D^8 + D^2 + D + 1$
17	
18	DL Frame Prefix can contain also MAP message(s) (for FFT-512 for example, the full
19	first symbol will contain the DL Frame Prefix and beginning of the DL\UL MAP messages)
20	and the MAP PHY burst may contain also the data.
21	For the lowest modulation it is exactly 3 bytes.
22	
23	The Combination of the fields Symbols and Sub_Channels defines the structure of the
24	MAP message and position (relative to the top left entry of the DL frame). In the small FFT
25	cases (OFDM modes) Sub_Channels field will always indicate full OFDM symbol.
26	
27	5.4.2.4 Proposed >>> Medifications in the MAD Measure
27	5.1.2.4. <<< Proposed >>> Modifications in the MAP Message
28	<<< to the 802.16.1 MAC >>>
29	In order to support a two dimensional allocation scheme, a pattern MAP IE should be
30	defined using the basic structure presented in Figure 2:

Bit	0	1	15		31
	Connection ID (16 bits)		UIUC (4 bits)	Slot Offset (12 bits)	
	Sub Channel Offset (8 bits)	Number of Sub Channels (8 bits)	Nun	nber of Slots (16 bits)	

1 Figure 2. Two dimensional pattern MAP IE 2 The pattern MAP IE shall define a two-dimensional allocation pattern by using the following parameters: 3 Slot Offset: Provides an OFDM symbol time reference. 4 Sub Channel Offset: Provides Initial Sub Channel offset from the start of the OFDM symbol 5 Number of Sub Channels: Provides the width of the allocation pattern, i.e. the number of 6 consecutive sub-channels used for this allocation pattern. 7 8 Number of Symbols: Provides the number of time Symbols to be used for the allocation 9 pattern. 10 5.1.2.5. SS Rx HW Capabilities Parameters 11 12 The following Capability should be added to the SS s Capabilities TLVs (chapter 11.4.5): 13 14 DL_PHY Bursts: describes the ability of SS to Rx simultaneously N PHY Bursts. 15 16 It is on BS (Scheduler s) responsibility to avoid situation an SS is assigned at the DL more 17 than N bursts. 18 19 5.1.2.6. DIUC\UIUC size 20 21 The DIUC and the UIUC sizes should be increased to be able to facilitate more Burst profiles. <<< We support the proposal to increase>>> The size of DIUC and UIUC should 22 23 be increased to 5 bits in the following messages: Take one bit from Slot Offset\PS Start in the UL MAP\DL MAP. 24 25 Take one bit from reserved bits in: DBTC-REQ, DBTC-RSP, DCD and UCD messages. 26 5.1.2.7. References [1] Y.Segal, Z.Hadad, I.Kitroser. Initial OFDMA Proposal for the 802.16.3 PHY Layer. 27 January 2001. 28

- 29 [2] IEEE 802.16.1/D2. Draft Standard for Air Interface for Fixed Broadband Wireless
- 30 Access Systems. January 2001.
- 31 [3] IEEE 802.16.3-00/02r4. Functional Requirements for the 802.16.3 Interoperability
- 32 Standard. September 2000.
- [4] IEEE 802.16.4c-01/02. Modifications to the TG1 MAC for use in TG4 Systems. January
 2001
- 35 [5] DVB-RCT v.116 standard approved draft, April 2001.
- [6] IEEE 802.16.3c-01/54. OFDM based Ranging Enhancement for the TG3 and TG4. April
 2001
- 38 5.2. Bandwidth Request Using CDMA Codes in OFDMA(OFDM)
 39 Base PHY <<<for TG3 & TG4>>>
- 40 [Itzik Kitroser, Yossi Segal, Zion Hadad]
- 41
- 42 **5.2.1. Introduction**

1 The functional requirements [3] and several contributions about the expected nature of the 2 traffic of TG3 and TG4 context, describe an IP centric environment, with dynamic and bursty 3 traffic that requires option of fast bandwidth reservation mechanisms. 4 The two main access techniques in centralized systems that are most commonly used are: 5 Contention Access (also Random Access) and Polling. 6 The Polling methods are best for systems with short propagation delays, small number of 7 subscribers and small overhead for polling messages but usually are less efficient with bursty 8 traffic. 9 The Contention methods usually well fit for bursty scenarios, increase the statistical 10 multiplexing gain, supply short delay for the bursty packets but reduces the channel efficiency with high risk of collisions and potentially high jitter.>>> 11 The <<<p>composed>>> described mechanism takes advantage of the OFDMA based PHY 12 13 <<<as proposed in [1]>>> to provide a CDMA code based bandwidth reservation tool. <<<</pre> 14 This mechanism has all the advantages of Contention scheme for bursty traffic but with much 15 higher success percentage (90% Vs 10% for 20 simultaneous requests with window size of 10 16 slots, see Simulation Results) and better channel utilization >>>. 17 18 5.2.2. Description of the <<< proposed>>> Bandwidth Request 19 mechanism 20 <<< As described in [6] and in [1],>>> several PHY configurations <<< are proposed,</pre> 21 especially,>> exist. 22 23 The 1K and 2K modes define the concept of sub-channels as a subset of the frequencies 24 transmitted in one OFDM symbol, those two modes define a unique ranging slots that co-25 exists with data slots for each OFDM symbol. 26 27 The SS may use the ranging slots to send CDMA codes from a three domains of codes: Initial 28 Ranging, Maintenance Ranging and bandwidth requests. The CDMA codes used for 29 bandwidth request are defined as Request Codes. 30 31 The <<< proposed >>> Bandwidth Request mechanism defines usage of the Request Code by 32 the SS to request fast bandwidth allocation on a bursty basis. 33 34 Figure 21 describes the messages sequence for CDMA bandwidth request: 35

1 2

Figure 21. Bandwidth Request in high FFT modes

The SS, upon a need to request for transmission slots, shall access the air interface without the need to be polled and with reduced collision risk by transmitting a Request Code. Several request codes sent by several SS can be transmitted simultaneously without collision <ce actually there may be a collision but the data is believed to survive due to separation by CDMA codes >>> (with limitation on the number of parallel codes).

9 The BS, when demodulating the ranging slots, and when receiving a request code, shall

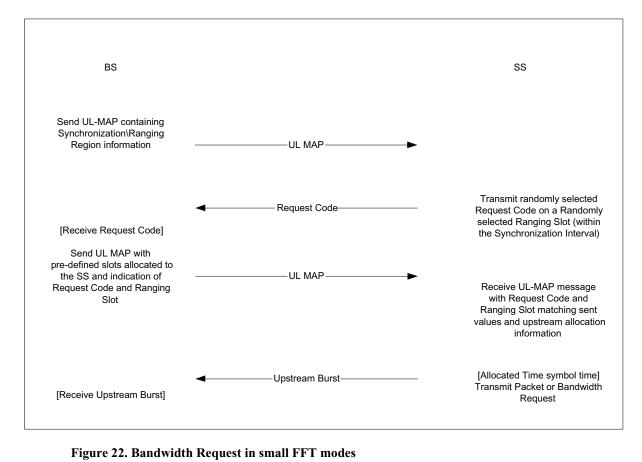
10 allocate a pre-defined (and configurable) number of bytes to the SS, the addressing of the

11 allocation shall be done by attaching the indication of the Ranging Slot and Request Code.

12

13 The SS will use the unique allocation either to send packet or bandwidth request.

14


15 In the case of small FFT size (Access Scheme 1 in [6]), the UL MAP message shall have

16 indication of the synchronization interval size and time (full OFDMA symbols carrying only

- 17 CDMA codes with one or two sub-channels), the SS shall send the request codes in this
- 18 interval.
- 19 20

Figure 22 describes the messages sequence for this case:

21

8 9

1

<>< The advantage of the proposed mechanism is the fairly safe request indication by</p> 5 the SS and transmitting bandwidth request in a unique allocated slot, or the option for fast requests for small allocation that can be used to send bursty based packets (like TCP Acks) in 6 7 a highly dense cells. >>>

5.2.3. Request Code Grant Interval

When using the Request Code, the BS allocates a pre-defined number of slots to the 10 sending SS whose Request code and Ranging slots are provided in the upstream MAP IE. 11 The value of such allocation is defined by the BS and can be optimizes according to 12 13 the traffic behavior. 14

The minimum value of the grant interval should be big enough to accommodate at 15 least upstream bandwidth request message.

The Unsolicited Grant Size parameter (section 11.4.12.19 page 356) can be used for 16 this purpose. 17 18

5.2.4. New UIUC Addition

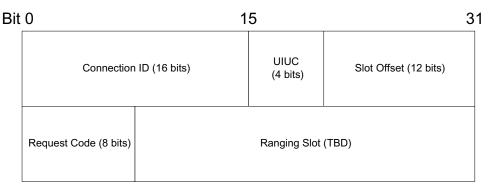
19 20 New UIUC value should be added in order to identify allocation as reaction to 21 Request Code. The following UIUC value should be added to section 6.2.2.2.4 Table 5 page 67: 22 23 24 25

- 26 27
- -

Table 3. Request Code UIUC value

IE Name	UIUC	Connection ID	Mini-slot Offset
Request Code	12	Broadcast	TBD — According to
Allocation			OFDMA/OFDM allocation
			schemes

2


3 In this proposal, we adopt the Upstream MAP IE structure presented in [4] to provide

4 enhancements with full backward compatibility.

5

6 Figure 23 shows the proposed Upstream MAP IE for the proposed new UIUC (as defined in7 Table 3)

- 8
- 9

10 11

Figure 23. Proposed Upstream MAP IE structure for Request Code UIUC

12

13 **Ranging Slot**: A required parameter if the SS used CDMA Ranging Slot for bandwidth

14 request, in this case the UL-MAP IE element will use broadcast CID, and the combination of

15 Ranging Slot and Request Code shall be used to address the requesting SS.

16 The Ranging Slot value shall indicate a combination of OFDMA time symbol and Sub-

- 17 Channel number
- 18

19 **Request Code**: A required parameter if the SS used CDMA Request Code for bandwidth

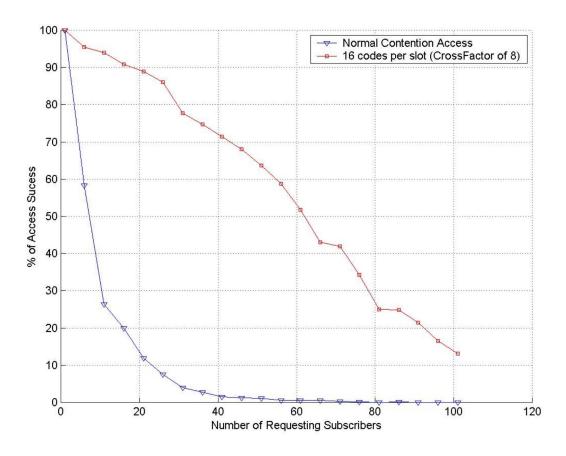
20 request, in this case the UL-MAP IE element will use broadcast CID, and the combination of 21 Panging Slot and Pequest Code shall be used to address the requesting SS

- 21 Ranging Slot and Request Code shall be used to address the requesting SS.
- 22
- 23 <<< <<<<

24 The following section, though important, is not a normative text and thus should be deleted or

- 25 removed to the informative part
- 26

27 Simulation Results


- 28 The following section describes results of a simulation done to compare the proposed
- 29 technique with classical contention based bandwidth request.
- 30 The simulation was done for period of 10 OFDMA symbols with one sub-channel allocated
- 31 for Request Codes.
- 32 Each user randomly selects (with uniform distribution) time symbol and Request code, the
- number of available codes was 16, with cross correlation factor of 8 meaning that if more
- 34 then 8 users selected the same opportunity (bucket) then all of them are lost, also if two or
- 35 more users selected the same code, they are considered as failed.

1 The conditions for the normal contention access assume that each request requires exactly

2 one slot (if preamble should be required for each request, then the number of the transmission

3 opportunities should have cut by half, and the results for the contention case would be worst).

- 4 The simulation deals with one attempt (with window size of 10 slots), retransmission will
- 5 improve both of the scenarios, better for the CDMA case.
- 6 Figure 24 describes the simulation results:
- 7

8

9

Figure 24.CDMA Request Vs. Contention Request for 10 time symbols

10

11 The X-axis defines the number of users sending requests, the Y-axis defines the12 access success in percentage.

As can be seen, for 10 users the contention access results with ~35% of success while the CDMA scheme results with ~95% of success. For 50 users the contention access drops down to only 1% of success while the CDMA access results with ~63% of success. The results clearly show that for one access attempt, the CDMA scheme is much better than the normal Contention scheme, adding backoff exponential retry algorithm will improve the results for both cases but will introduce side effects such as latency and jitter.

The results show that for dense cells with more then 20 simultaneous contention
requests, in normal Random Access window of 10 slots, the probability to fail at first request
is about 90% while in the CDMA access with same conditions, the probability to fail is about
10%.

- 25

- 1 2
- <<<< References lists of all the sections will be integrated together >>>
- 3 4

5.2.5. References

- 5 [1] Y.Segal, Z.Hadad, I.Kitroser. Initial OFDMA Proposal for the 802.16.3 PHY Layer.
- 6 January 2001.
- 7 [2] IEEE 802.16.1/D2. Draft Standard for Air Interface for Fixed Broadband Wireless
- 8 Access Systems. January 2001.
- 9 [3] IEEE 802.16.3-00/02r4. Functional Requirements for the 802.16.3 Interoperability
- 10 Standard. September 2000.
- [4] IEEE 802.16.4c-01/02. Modifications to the TG1 MAC for use in TG4 Systems. January
 2001
- 13 [5] DVB-RCT v.116 standard approved draft, April 2001.
- 14 [6] I.Kitroser, Z.Hadad and Y.Segal. OFDMA/OFDM based Ranging Enhancement for TG3
- 15 & TG4. April 2001.
- 16 [7] 802163p-01_27.pdf. Traffic Models for Broadband Wireless Access Systems. January
- 17 2001
- 18

19 **5.3. Ranging Enhancement**

- 20 <<< Submission OFDM/OFDMA based Ranging Enhancement for TG3 & TG4 by Itzik
 21 Kitroser, Yossi Segal, Zion Hadad >>>
- 22 23

5.3.1. Introduction

- <<< This document describes proposed enhancements to the TG1 MAC s ranging
 mechanism for the TG3 and TG4 MAC. >>>
- 26 The goal of the enhancements is to use the advantages of the OFDM/OFDMA based PHY to
- facilitate simpler and safer synchronization of the user with the base station.
- The physical part of the proposed enhancements are described in the PHY proposals [1] <<< 30 submitted several times to the TG3 & TG4 groups.
- 31

The proposed mechanism is fully integrated in the approved (since April 2001) DVB-RCT
 standard (that is based on an OFDMA return channel) as a mature and well-defined

- 34 improvement technique of the classical Ranging algorithms.>>>
- 35

The contribution describes full description of the Ranging enhancements, proposed changesto the TG1 MAC to accommodate the proposed mechanism.

38 39

40

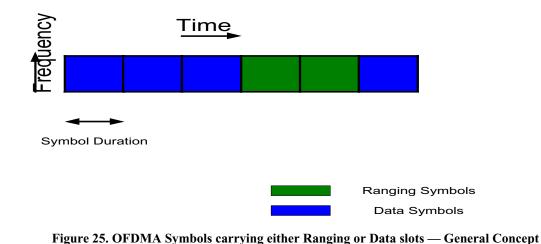
5.3.2. Background

The OFDMA (OFDM) upstream physical layer access method is based on the use of a
 combination of time and frequency division access technique.

43

44 The <<< proposed >>> described synchronization technique is based on several sub-carriers
 45 that are spread on the entire bandwidth and are collected in CDMA form. This allows several

46 users to perform synchronization simultaneously <<<; those special carriers within an


47 OFDMA (OFDM) <<< time symbol are allocated for synchronization purpose and shall be

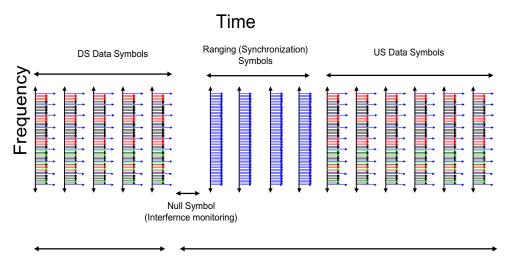
48 referred as Ranging slots. —the definition is done below>>>

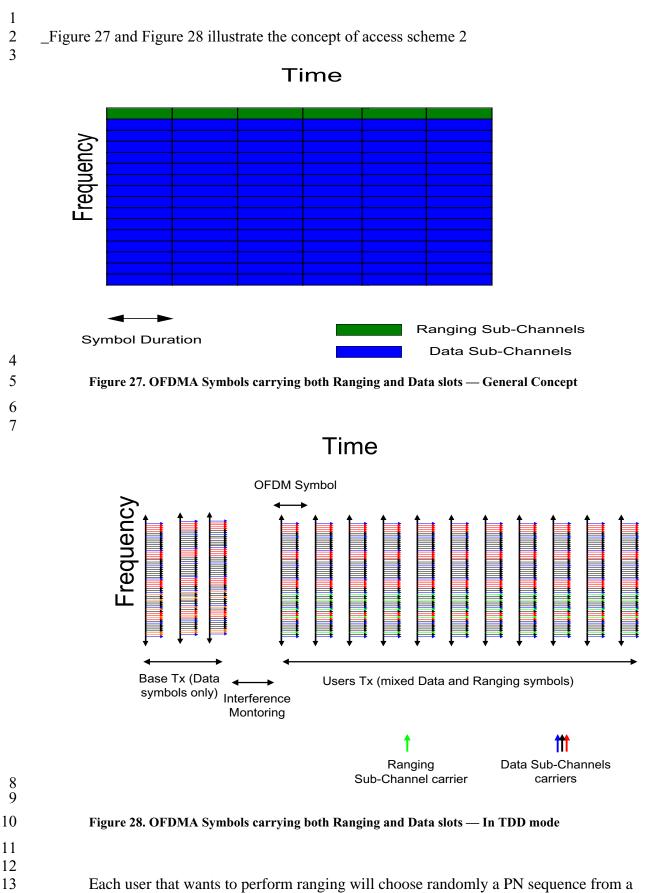
- 1 The basic allocation unit (e.g. slot) is a combination of a time symbol and a sub-channel. The
- 2 <---- Cerement >>> OFDMA (OFDM) based PHY <---> define several working
- 3 modes, those modes define two upstream access schemes:
- 4 1. Each OFDMA (OFDM) symbol will carry either data or ranging slots
- 5 2. Each OFDMA (OFDM) symbol will carry both data and ranging slots

- 9
- 10

12

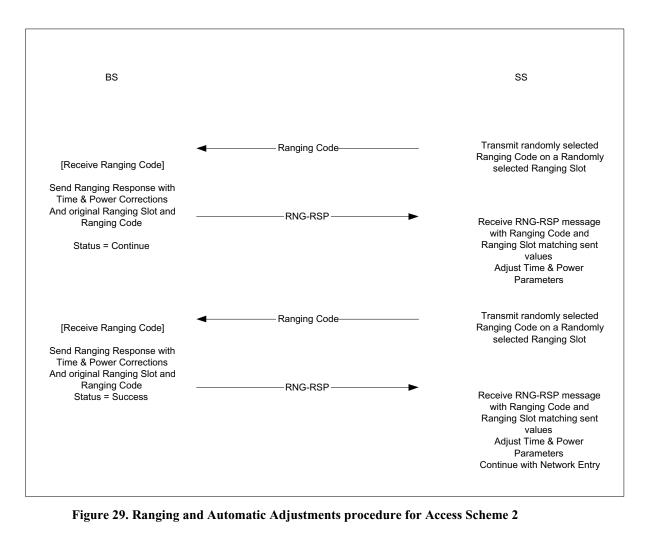
13

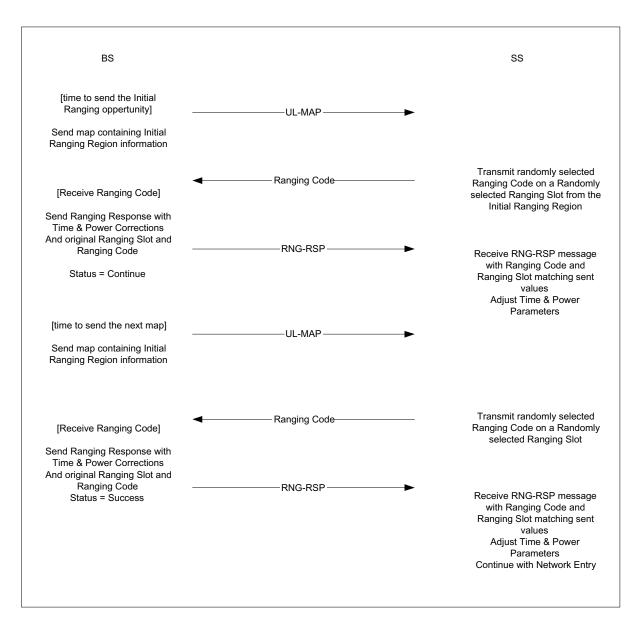



Figure 26.OFDMA Symbols carrying either Ranging or Data slots — In TDD mode

Base Tx

User Tx


- 17
- 18
- 19
- 20
- 21
- 22 23



14 pre-defined set of PN sequences (16 different sequences) and will modulate (with a pre-

defined robust modulation scheme, i.e. BPSK) it on a pre-defined set of carriers. The
 randomly chosen PN is referred as *Ranging Code*.

3 4 5.3.3. <<< Proposed >>> Ranging Mechanism Overview 5 The ranging is the process of acquiring the correct timing offset and power corrections such 6 that the SS s transmissions are aligned to a symbol that marks the beginning of a burst(s) 7 boundary with the required power. 8 9 The proposed ranging technique is mostly similar to the one presented in [2]: 10 The SS, after acquiring downstream synchronization and upstream transmission 11 • 12 parameters, shall choose randomly a Ranging Slot (with use of a binary truncated 13 exponent algorithm to avoid of possible re-collisions) as the time to perform the 14 ranging, then it chooses randomly a Ranging Code (from the Initial Ranging domain) 15 and sends it to the BS (as a CDMA code). 16 17 The BS upon successfully receiving a Ranging Code sends a Ranging Response • 18 message that addressed the sending SS by supplying the Ranging Code and Ranging Slot in the message. The Ranging Response message contains all the needed 19 20 adjustment (e.g. time, power and possibly frequency corrections) and a status notification. 21 22 23 Upon receiving Ranging Response message with continue status, the SS shall • 24 continue the ranging process as done on the first entry. 25 The main points of difference with the <<< classical >>> 802.16 MAC ranging process are: 26 27 28 • In modes with number of carriers ± 1K, a specific set of carriers shall be used for ranging, hence deduce that each OFDM symbol will always contain a pre-defined and 29 30 fixed ranging slot. 31 In modes with number of carriers < 1K, a full symbol(s) shall be used for ranging, this • means that the base station shall define an Initial Maintenance region in the same way 32 33 it defined in [2]. 34 The entry to the system is anonymous and remains so for the whole ranging process, the SS is identified by the indication of the sent ranging slot and sent ranging code. 35 In modes with number of carriers ± 1K, the BS does not need to allocate a specific 36 • 37 ranging region, this allow the SS to choose when to initiate the system entry. Several SS can send ranging code simultaneously without colliding (due to the 38 • 39 CDMA technique). 40 41 42 The following message flow charts (_Figure 29 and Figure 30) describe the ranging adjustments process in the two access mode. 43 44 45 <<<Is it an overview ? Seems more like detailed definition >>> 46

3

4

6

Figure 30. Ranging and Automatic Adjustments procedure for Access Scheme 1

5 <--- Proposed Modifications to the 802.16.1 MAC >>>

- 7 The following sections define the detailed modifications need to done to the 802.16.1 MAC
- 8 in order to accommodate the proposed CDMA ranging technique assuming that the PHY
- 9 layer supports the required features (e.g. ranging slots, ranging codes etc.)
- 10

5.3.3.1. Ranging region <<< indication >> Definition

11 For the modes with number of carriers < 1K, the ranging slots shall use full OFDM symbols,

12 therefore the initial ranging interval shall be allocated in the same way it is done in [2].

- 13 For the modes with number of carriers ‡ 1K, the ranging slots shall use one (or more) sub-
- 14 channels of an OFDMA symbol and will exists for each OFDMA symbol, therefore no
- 15 indication about initial maintenance region is required
- 16

5.3.3.2. Update to 6.2.2.2.6 Section

- 2 The following addition should be done to the RNG-RSP Message description in section
- 3 6.2.2.2.6 line 61 page 69:
- 4 Ranging Slot: A required parameter if the SS used CDMA ranging code for initial ranging,
- 5 in this case the RNG-RSP message will be sent using broadcast CID, and the combination of
- 6 Ranging Slot and Ranging Code shall be used to address the sending SS.
- 7 The Ranging Slot value shall indicate a combination of OFDMA time symbol and Sub-
- 8 Channel number
- 9

1

10 Ranging Code: A required parameter if the SS used CDMA ranging code for initial ranging,

- 11 in this case the RNG-RSP message will be sent using broadcast CID, and the combination of
- 12 Ranging Slot and Ranging Code shall be used to address the sending SS.
- 13

5.3.3.3. Change in the RNG-RSP Message

- 14 The following TLV values should be added to the RNG-RSP message encoding table,
- 15 section 11.1.4 page 318:
- 16 17

Table 4. RNG-RSP TLV Addition

Name	Туре	Length	Value	
	(1 byte)	(1 byte)	(Variable Length)	
Ranging Slot	13	TBD	Used to indicate the OFDMA (OFDM) time symbol and Sub-Channel reference that was used to transmit the ranging code.	
			This TLV is used in conjunction with the Ranging Code value to identify the sending SS.	
Ranging Code	14	1	Used to indicate the ranging code that was sent by the SS (unsigned 8-bit).	
			This TLV is used in conjunction with the Ranging Slot value to identify the sending SS.	

18

19 **5.3.3.4.** References

- 20 [1] Y.Segal, Z.Hadad, I.Kitroser. Initial OFDMA Proposal for the 802.16.3 PHY Layer.
- 21 January 2001.
- 22 [2] IEEE 802.16.1/D2. Draft Standard for Air Interface for Fixed Broadband Wireless
- 23 Access Systems. January 2001.
- 24 [3] IEEE 802.16.3-00/02r4. Functional Requirements for the 802.16.3 Interoperability
- 25 Standard. September 2000.
- [4] IEEE 802.16.4c-01/02. Modifications to the TG1 MAC for use in TG4 Systems. January
 2001
- 28 [5] DVB-RCT v.116 standard approved draft, April 2001.

1

[Editorial Group: Subir, John]

6. Power Control (Subir, John)

3

4 7. Ease of Installation Support in MAC <<< Pending >>>

- 5 <--- E.g. Dynamic Frequency Selection. Editorial Group: John, Chet, Demos]
- 6

7 8. Support for Advanced Antenna Technology

8 [Editorial Group: Einan, Huan Chun, John] 9

10 <<< Support for Adaptive Antenna Arrays — title of the submission>>>

11

12 8.1. Architectural Overview

13 Adaptive Antenna Arrays are elements of the BWA system that are used in 14 conjunction with the PHY, to enhance the performance of the system. Adaptive Arrays can improve range and system capacity. From the MAC point of view, the PHY can be equipped 15 16 with an Adaptive Array element or not, depending on the system implementation. In the context of this standard, adaptive array support in the MAC sub-layer is defined by a set of 17 services supplied by the underlying PHY, and by MAC protocol functions controlled by the 18 CS. The main functions affected by Adaptive Array Support are: 19 20 MAC control functions- Uplink/Downlink MAP distribution, Channel a)

- 21 Description
- 22 23
- b) MAC utility function- PHY related information provided by MAC
- c) Registration functions- Initial Synchronization/Ranging

The main purpose of Adaptive Array Support is to enable the MAC to use any PHY that may have Adaptive Array capabilities, independent of the PHY type, or the type of Adaptive Array in use. Adaptive Array Support can be implemented in the SS MAC (which then will be able to interoperate with the MAC of any BS that have Adaptive Array Support at the MAC layer), or in the BS MAC (Which will be able to interoperate with any SS that have this capability, at the MAC layer).

31

32

33

8.2. Definitions

- The following definitions apply to Adaptive Array support:
- 34 <---- It is a list of the terms, that still need definitions >>>
- 35 AAS- Adaptive Array Support
- 36•Broadcast Coverage
- 37•Unicast Coverage
- **38** Reciprocal Matrix Channel Estimation
- **39** Feedback Matrix Channel Estimation
- 40 AAS Ranging interval
- 41 42

8.3. Compatibility model

2 The Adaptive Array Support (AAS) is an optional component of the 802.16.3
3 standard MAC.

<<< An 802.16.3 compliant system may implement this option. In the case AAS
option is implemented in an 802.16.3 system, it must comply with all specifications as
specified in this chapter. The AAS option, if present must not prevent the system from
interoperating with other 802.16.3 MAC compliant systems at the MAC level, when
operating without AAS option. — all this is contained in the first sentence>>>

9

10

8.4. MAC Control functions to support Adaptive Arrays

The main difference between a system with Adaptive Array Processing capabilities, 11 12 and a system that do not have these, are related to differences in capacity and range that is offered to each of the individual SSs. One property, inherent to FBWA system with AAS is 13 that the Broadcast Coverage is in general, smaller then the Unicast Coverage. The MAC 14 control functions related to AAS are aimed to compensate for this property, as to enable the 15 MAC to work seamlessly with respect to the Adaptive array. 16 17 The following messages are used to provide AAS MAC control functions 18 P-DUCD (Private Uplink/Downlink Channel Descriptor) used as an 19 alternative to UCD and DCD 20 • P-MAP (Private MAP) used as an alternative to UL-MAP and DL-MAP. 21 22 23 8.4.1. Private Uplink/Downlink Channel Descriptor (P-DUCD) 24 message

A Private Uplink/Downlink Channel Descriptor message shall be transmitted by the BS to each SS that did not receive the last DCD or UCD. The P-DUCD message should contain all information contained in the DCD and UCD messages that is relevant to the addressed SS.

The MAC header and Downlink/Uplink channel ID are identical to the type-0 (UCD) packet format. The Type field value is TBD. The Configuration Change Count field is the sum of the values of Configuration Change Count fields in both corresponding UCD and DCD messages, to allow each SS to track changes and discard the P-DUCD message, in case no changes made since last update.

All TLV information that describe Uplink and Downlink channel and burst profiles are identical to their corresponding fields in the original DCD/UCD messages (the final TLV encodings should be updated after determination of the final channel encodings and DCD/UCD fields content for 802.16.3). A SS receiving a P-DUCD will ignore the message, if it had received the UCD and DCD containing the same information. This can be verified easily by comparing the Configuration Change Count field.

- 40 41
- 8.4.2. Private MAP (P-MAP) message

The BS shall generate a Private MAP (P-MAP) message for each SS that had not received the last UL-MAP or DL-MAP. The P-MAP message defines the access to Downlink and Uplink information and contains all information relevant to the addressed SS, contained in the UL-MAP and DL-MAP messages.

46 The MAC header and Downlink/Uplink channel ID are identical to the type-2 (DL-47 MAP) packet format. The Type field value is TBD. The P-MAP contains the same fields of 48 UL-MAP and DL-MAP in a single message. Unlike the typical UL-MAP which has a large 1 number of information elements (one for each connection for several SSs), the P-MAP shall

have only few information elements, since only connections relevant to the addressed SS are
 informed. A SS receiving a P-MAP will ignore the message, if it had received the MAP of

- 3 informed. A SS receiving a P-MAP will ignore4 the current frame correctly.
- 5
- 6

7

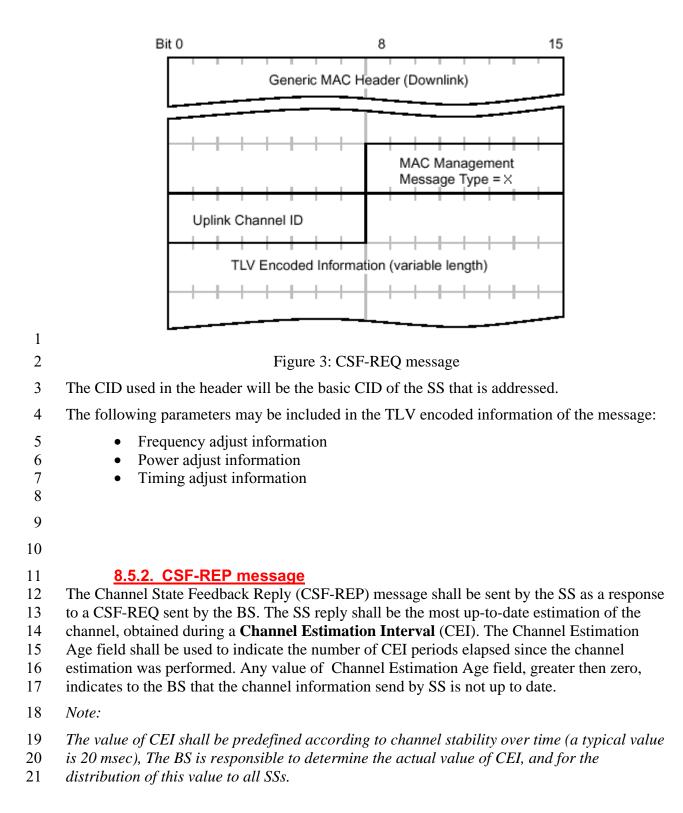
8.5. MAC Utility functions to support Adaptive Arrays

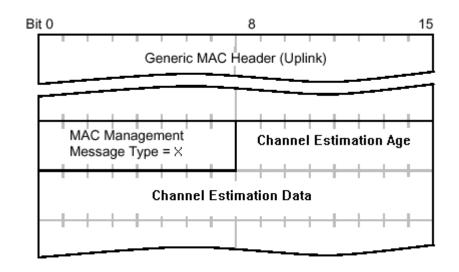
8 Adaptive Arrays use channel state information that are measured by the receiver at one end of

- 9 the link. When channel state of the downlink is required at the BS, there are two ways to10 obtain it:
- By relying on reciprocity, thus using the uplink channel state estimation as the downlink channel state.
- By using feedback, thus transmitting the estimated channel state from the SS to
 BS.

15 While the first method seems to be more elegant, it will not fit FDD systems, where

- 16 reciprocity does not apply (due to the large frequency separation between uplink and
- 17 downlink channels).
- 18 Adaptive Array Support for FDD systems contains two MAC control messages: Request for
- 19 estimation and a reply. The reply contains channel state information, obtained at the SS. The
- 20 channel state information shall be computed periodically during Channel Estimation Interval
- 21 (CEI). The CEI is time allowed from the arrival of the signal that the SS uses for channel
- estimation, to the reply send by the SS. The value of CEI shall be determined by the BS and
- 23 broadcasted to all SSs at registration.
- 24
- 25


8.5.1. CSF-REQ message


The Channel State Feedback Request (CSF-REQ) message shall be sent by the BS from time to time, to signal the SS that channel state information should be updated. The time between

requests is an internal parameter of the BS MAC, and should not be limited to any specific

value. The SS should perform channel estimations on a regular time basis, in order to be able

30 to provide up-to-date estimations upon request.

Figure 4: CSF-REP message

3

1 2

4 The Channel Estimation Data is a stream of data bits captured by the SS PHY. The definition

5 of this stream is left to the PHY, since it may be different for different PHY types. As an

6 example only, this data stream may represent 64 consecutive complex samples (of 8 bits I and

7 Q) of the received preamble or synchronization signal.

8

9