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G2 MMDS Scenario*

• Cells are < 4 miles in radius,

• Under-the-eave/window broadbeam
directional antennas (8-15ft) at the CPE

• 50-120ft BTS antennas.

* G2 MMDS:Generation2 Multi-channel Multi-point Distribution System
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Impairments
• Higher Path Loss (as compared to super cell

architecture)

• Fading: Macroscopic (due to shadowing)
and Microscopic (due to multipath).

• Co-channel and Adjacent channel
Interference

• More severe multipath delay spread

• Doppler spread
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Channel Model

• Channel Model shall describe
– Path Loss

– Multipath Fading and correlation

– Interference
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Channel Has Many
Dimensions

BTS Antenna Height

CPE Antenna Height

Wind speed/Traffic
Range

Beamwidth

Antenna Separation
Terrain/Foliage

Polarization
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Channel Model Variability
Channel parameters are RANDOM quantities

We need Statistical characterization
– Cumulative Distribution Function (CDF)

Typical parameter distribution

High Availability
System

Low Availability
System

Unfavorable Favorable
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Path Loss Model

• Hata, COST 231 Hata path loss models
are for very high BTS and are not
suitable for G2 MMDS scenario

• Erceg Model is the appropriate model
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 G2 MMDS Path Loss Model
Median Path Loss (Erceg model):

where

hf PLPLsddAdBPL ∆+∆+++= )/(log10)( 010γ
for d > d0

, 10 meters < hb < 80 meters√↵
 +−=

b
b h

cbhaγ

λ is the wavelength

)/4(log20 010 λπdA = (free space path loss)

(mean path loss exponent)
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Path Loss Model (contd.)
•    is a lognormal shadow fading

– zero mean

– terrain dependent standard deviation

•        is the BTS height in meters

•            are constants dependent on the
terrain category

•      is chosen as 100m (reference distance)

•     is the distance from BTS
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Correction Terms

• Frequency correction terms

• CPE height correction term (> 2 meters)

√↵
=∆ 2000log7.5 fPLf

f  in MHz

)2log(8.10 CPE
h

hPL −=∆ 1 meter < hCPE < 8 meters
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Path Loss Scatter Plot

SU Measurements

*
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K-Factor
• K-Factor  is the ratio of power in the

fixed component to the power in the
variable component

• It depends upon

– BTS, CPE heights and beamwidths

– Distance from the antenna

– Scattering environment

– Wind, traffic, season
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K-factor Model

• Erceg model for K-factor

• Fs is a seasonal factor
– 1.0; summer (leaves)

– 2.5; winter (no leaves)

• Fh is the height factor
– (h/3)0.46 (h is the CPE height in meters)

udKFFFK obhs
γ=
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K-factor Model (contd.)

• Fb is the beamwidth factor
– Fb = (b/10)-0.62; (b in degrees)

• Ko and γ are regression coefficients
– Ko = 10; γ = -0.5

• u is a lognormal variable
– zero mean

– std. deviation of 8.0 dB
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K-factor and Reliability

• K-factors are highly variable

• To ensure 99.9% reliability, systems
must be designed for zero K-factor
(Rayleigh fading)
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Delay Spread Model
• Spike-Plus-Exponential Model (Erceg)

A, B, τo and ∆τ  are experimentally
determined

• Good Model for directive antennas
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Multipath Fading Model

Modeled by a Tapped Delay Line (TDL)

+

∆2 ∆n

g2 g3
gn ∆i : Delay of the i th tap

gi:  i th tap coefficient

∆1Input signal

Output signal

Output signal is a linear combination of 
time-shifted, attenuated copies of the input signal

g1
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Multipath Fading Model
(cont’d)

• Number of taps

• Delay values

• Tap Coefficients (random, uncorrelated)
– K-Factor

– Gain

–  Doppler spectrum
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Doppler Power Spectrum

Rounded Spectrum with fD~ 0.1Hz- 2Hz

fD ~0.4Hz fD ~2Hz
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Antenna Correlation

For SIMO, MIMO channels, correlation
between multiple channels depends on
– Spacing between antennas

– Height of the antennas

– Beamwidth

– Polarization
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Antenna Gain Reduction
Factor

• The effective gain of a directional
antenna is lower than the actual gain in
a scattering environment

• The Gain reduction factor needs to be
considered in the link budget
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Interference Model

• Co-channel Interference
– Microscopic fading independent of the

primary channel

– C / I depends on
• Reuse factor

• Antenna beamwidth

• Adjacent channel Interference
– Own system / ITFS channel
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Stanford University Interim
(SUI)

Generic Channel Models
for G2 MMDS
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Channel Modeling

         SU
Measurements

Published 
Literature

Stanford
University
Interim
(SUI)
Channel 
Model



7 Nov 00

Rationale for
SUI Channel Models

• Many parameter combinations possible

• We picked 6 models related to
deployment and Terrain scenarios
typical of CONUS
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Terrain SUI Model

C
Flat/Light Tree Density SUI-1, SUI-2

B
Flat/Moderate Tree Density SUI-3, SUI-4

A
Hilly/Moderate to Heavy
Tree Density SUI-5, SUI,6
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Parametric View of
SUI Channel models

Low Moderate High
Low SUI-1,2
High

Low Moderate High
Low SUI-3 SUI-6
High SUI-4 SUI-5

K: Low

K: Moderate/High

Delay Spread

Delay Spread

Doppler

Doppler
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SUI Channel Structure

•A generic channel structure for a MIMO (2x3) channel (SISO,
SIMO are subsets of this structure)
•The mixing matrices correlate the signals at Tx and Rx
• TDL matrix introduces fading. Each TDL has 3 taps
• Antenna correlations are assumed to be the same everywhere

Input
Mixing
Matrix

Tapped Delay Line
(TDL)
Matrix

Output
Mixing
Matrix

Tx Rx
Primary or 
Co-channel
Interferer
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Model Assumptions

• A cell size of 4 miles (6.4 km)

• BTS Antenna height: 50ft

• CPE antenna height: 10ft

• BTS Antenna beamwidth: 120 deg

• CPE Antenna Beamwidth: 50 deg

• Vertical Polarization only
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SUI-1 Channel

• RMS Delay Spread = 0.1 µs, Overall K = 10

Ant Corr = 0.7

 Tap 1 Tap2 Tap3
Delay (∆) 0 0.4 0.8 µs
Power (P) 0 -15 -20 dB
K factor 18 0 0
Doppler (D) 0.4 0.4 0.4 Hz

Terrain Category C
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SUI-2 Channel

• RMS Delay Spread = 0.2 µs, Overall K = 5

Ant Corr = 0.5

 Tap 1 Tap2 Tap3
Delay (∆) 0 0.5 1 µs
Power (P) 0 -12 -15 dB
K factor 10 0 0
Doppler (D) 0.4 0.4 0.4 Hz

Terrain Category C
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SUI-3 Channel

• RMS Delay Spread = 0.3 µs

Ant Corr = 0.25

 Tap 1 Tap2 Tap3
Delay (∆) 0 0.5 1 µs
Power (P) 0 -5 -10 dB
K factor 0 0 0
Doppler (D) 0.4 0.4 0.4 Hz

Terrain Category B
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SUI-4 Channel

• RMS Delay Spread = 1.3 µs

Ant Corr = 0.25

 Tap 1 Tap2 Tap3
Delay (∆) 0 2 4 µs
Power (P) 0 -4 -8 dB
K factor 0 0 0
Doppler (D) 1 1 1 Hz

Terrain Category B
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SUI-5 Channel

• RMS Delay Spread = 3 µs

Ant Corr = 0.25

 Tap 1 Tap2 Tap3
Delay (∆) 0 5 10 µs
Power (P) 0 -5 -10 dB
K factor 0 0 0
Doppler (D) 2 2 2 Hz

Terrain Category A
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SUI-6 Channel

• RMS Delay Spread = 5.2 µs

Ant Corr = 0.25

 Tap 1 Tap2 Tap3
Delay (∆) 0 14 20 µs
Power (P) 0 -10 -14 dB
K factor 0 0 0
Doppler (D) 0.4 0.4 0.4 Hz

Terrain Category A
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Summary

• Interim Channel Models presented for
G2 MMDS scenario

• SUI Channel Models developed based
on measurements and published
literature

• 6 typical channels presented
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3-taps vs 6-taps (typical)
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Frequency

Frequency

3-taps

6-taps

Dly = [0 2 5] µs

Dly = [0 1 2 3 4 5] µs

Gain = [0 -4 -10] dB

Gain = [0 -2 -4 -6 -8 -10] dB

Example: 3 Taps vs 6 Taps
Comparison of Frequency responses


