Key System Characteristics and Evaluation Criteria for the TG3 Air Interface Standard

Document Number : **IEEE 802.16.3p-01/41**

Date Submitted: 15th March 2001

Source:

David Trinkwon Voice: 650 245 5650 Transcomm Inc Fax: 650 649 2728

E-mail: trinkwon@compuserve.com

Venue: IEEE 802.16 Meeting #12, Hilton Head Island, SC

Base Document: IEEE 802.16.3c-01/41 http://ieee802.org/16/tg3/contrib/802163c-01_41.pdf

Purpose: The Base Document is proposed to be used as the basis for a compliance response worksheet to be used for the system level evaluation of alternative TG3 air interface proposals beyond Meeting 12 and/or system level characterization of the eventual standard.

Notice:

This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard."

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:r.b.marks@ieee.org as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.

<u>WHAT</u>

- Responds to TG3 Call for Contributions <u>802163-00_25</u> on Key (System) Characteristics and Evaluation Criteria.
- Consolidates inputs from earlier documents <u>802163-00_02r4</u>, <u>802163-00_07r1</u>, <u>802163c-00_02</u> and <u>802163c-00_27</u>.
- Document 802163-00_07r1 included a "placeholder" sub-section on System Key Characteristics and Evaluation Criteria.
- Some contributions were received (e.g. 802163c-00_02 and 802163c-00_27.) but no further action was taken.
- Incorporates the FRD Requirements Summary (802163-00_02r4 Appx A) into a proposed Characterization / Evaluation worksheet.

<u>WHY</u>

- Encourage a "Top Down" (or System Level) approach to the TG3 Technical Characterization and Evaluation Process
- Focus on the needs / priorities of Service Providers, Investors and Regulators. Characterize the eventual Standard in terms relevant to Service Providers, Investors and Regulators

$\underline{HOW:}$ The Proposed Key System Characteristics and Evaluation Criteria

1. Compliance against Functional Requirements Summary (802163-00_02r4 Appx A)
--

•	Mandatory Requirements (Chart A1)	Score 1 – 10, Weighting 0.5
---	-----------------------------------	-----------------------------

- ▶ Recommended Requirements (Chart A2)
 Score 1 10, Weighting 0.3
- Optional Requirements (Chart A3) Score 1 10, Weighting 0.2

Weighted Score 1 - 10

2. Deployment Cost Factors (See 802163c-00_27)

- Initial Coverage and Capacity (Chart B) Score 1 10, Weighting 0.3
- Maximum Capacity Single Cell (Chart C) Score 1 10, Weighting 0.3
- Maximum Capacity Multi-Cell (Chart D)
 Score 1 10, Weighting 0.2
- Installation Predictability (Chart E) Score 1 10, Weighting 0.2

Weighted Score 1 – 10

3. Regulatory Compliance (See 802163c-00_02) Chart F

- US MDS Band Score 1-10, Weighting 0.3
- International 3400-3700 Band Score 1-10, Weighting 0.3
- Other US Bands Score 1-10, Weighting 0.2
- Other International Bands Score 1-10, Weighting 0.2

Weighted Score 1 – 10

001-03-08 IEEE 802.16.3c-01/41

A Functional Requirements

Each candidate short-listed for evaluation shall complete a compliance response to the following Requirements, copied from the 802.16.3 Functional Requirements Document (FRD). A score will be assessed in accordance with the following scale:

- A.1 Mandatory Requirements: Score 1 (low) 10 (high) degree of compliance.
- A.2 Recommended Requirements: Score 1 (low) 10 (high) degree of compliance.
- A.3 Optional Requirements: Score 1 (low) 10 (high) degree of compliance

Apply weighting factors to A.1, A.2 and A.3 scores to yield an overall weighted score of 1 - 10

A.1 Mandatory

It is mandatory that the 802.16.3 standard support or specify the items in Table 2.

Table 1: Mandatory Requirements

#	Section	Requirement	Compliance
MI		The forthcoming air interface standard MUST comply with the system requirements.	
M2		The 802.16.3 air interface interoperability standard SHALL be part of a family of standards for local, metropolitan and wide area networks.	
М3	2	802.16.3 systems SHALL be deployable in multiple-cell frequency reuse systems and single cell (super cell) frequency reuse systems.	
М4	2.3	Since all data traffic in a single cell of an 802.16.3 network MUST go through the base station, that station SHALL serve as a radio resource supervisor.	

Licensed Allocation	Block Structure Structure	Example
5 MHz	contiguous	USA WCS C or D
6 MHz	contiguous	USA UHF, MDS
7 MHz	contiguous	7777
	3.5 + 3.5	ETSI
10 MHz	contiguous	2222
	5+5 PCS	USA, CITEL
	5 + 5 WCS- A	USA
	5 + 5 WCS-Other	USA
	5 + 5 General	USA
12 MHz	contiguous	USA UHF, MDS
	6+6	USA UHF, MDS
12.5 MHz	contiguous	USA 3650
	6.25 + 6.25	USA 3650
14 MHz	contiguous	7777
	7+7	ETSI
18 MHz	contiguous	USA UHF, MDS
	6 + 12	USA UHF, MDS
20 MHz	contiguous	2222
	10 + 10	USA WCS, PCS
	5 + 15	USA WCS
24 MHz	contiguous	USA UHF, MDS
	6 + 18	USA MDS
	12 + 12	USA MDS
25 MHz	contiguous	USA 3650 , CITEL
	12.5 + 12.5	USA 3650
	10 + 15	777
28 MHz	contiguous	222
	14 + 14	ETSI
30 MHz	contiguous	USA MDS
	15 + 15	USA PCS
	18 + 12	USA MDS
36 MHz	contiguous	USA MDS
10.00	18 + 18	USA MDS
48 MHz	contiguous	USA MDS
	24 + 24	USA MDS
	18 + 30	USA MDS
50 MHz	contiguous	USA 3650
	25 + 25	USA 3650, CITEL

2001-03-08 IEEE 802.16.3c-01/41

B Initial Coverage

A Service Provider must establish initial coverage using as few base station sites as possible in order to minimize initial build-out cost and time-to-market. The key characteristics which determine how many base stations are needed to initially cover a target market are the link budget and fade margin assumptions used for RF planning and installation purposes. The capacity of the minimum cost base station configurations will then determine what subscriber penetration can occur before incremental costs and/or additional base-station sites must be deployed. For each potential frequency band listed below, state the proposed link budget, installation margin and initial capacity of a single cell base station. Separately describe the deployment assumptions used to support these statements.

Licensed	Block Structure		Link Budget	Instiln. Margins	Initial Capacity
Allocation	Structure	Example	Down / Up	Down / Up	Down / Up
5 MHz	contiguous	USA WCS C or D			
6 MHz	contiguous	USA UHF, MDS			
7 MHz	contiguous	7777			
	3.5 + 3.5	ETSI			
10 MHz	contiguous	7777			
	5 + 5 PCS	USA, CITEL			
	5 + 5 WCS- A	USA			
	5 + 5 WCS-Other	USA			
	5 + 5 General	USA			
12 MHz	contiguous	USA UHF, MDS			
	企工业	TICATILE MINC			

2001-03-08 IEEE 802.16.3c-01/41

C Maximum Capacity - Single Cell

A Service Provider must increase the capacity of the initial base-station(s) to accommodate growth in the number of subscribers and the increases in traffic demand from subscribers over time. For each potential frequency band listed below, state the maximum capacity of a single cell base station, re-using the same deployment assumptions as in (B) above. Explain the scalability / modularity steps between the initial and maximum capacity limits.

Licensed	Block Structure		Maximum Capacity	
Allocation	Structure	Example	Down	Up
5 MHz	contiguous	USA WCS C or D		
6 MHz	contiguous	USA UHF, MDS		
7 MHz	contiguous	7777		
	3.5 + 3.5	ETSI		
10 MHz	contiguous	7777		
	5+5 PCS	USA, CITEL		
	5+5 WCS-A	USA		
	R. C. R. 1880an Cuber.	11 10h A		

2001-03-08 IEEE 802.16.3c-01/41

D Maximum Capacity – Multi-Cell

A Service Provider must increase the number of base station sites to extend the coverage and/or capacity of the deployed network. For each potential frequency band listed below, state the maximum capacity of a multi-cell base station. State the frequency re-use assumptions used.

Licensed	Block Structure		Maximum Capacity		Frequency
Allocation	Structure	Example	Down	Uр	Reuse
5 MHz	contiguous	USA WCS C or D			
6 MHz	contiguous	USA UHF, MDS			
7 MHz	contiguous	7777			
	3.5 + 3.5	ETSI			
10 MHz	contiguous	7777			
	5+5 PCS	USA, CITEL			
	5+5 WCS-A	USA			
	5+5 WCS-Other	USA			
	5 + 5 General	USA			
12 MHz	contiguous	USA UHF, MDS			
	6+6	USA UHF, MDS			
12.5 MHz	contiguous	USA 3650			

TEEE 802 16 3c-01/41

E Installation Predictability

2001-03-08

A Service Provider needs to reliably predict the feasibility of providing the desired service at the customer location, given only the candidate base station location(s), the customer location and an appropriate propagation / coverage prediction tool. The Installation Margin quoted in (B) above assures link availability / reliability after an installation is completed. State the additional Margins needed to assure:

- a) 90, 80 and 70 percent coverage (shadow margin) assuming professional (outdoor) installation at the customer location with standard antenna height and alignment
- b) 90, 80 and 70 percent coverage (shadow margin) assuming non-professional (outdoor) installation at the customer location with standard antenna height and alignment
- e) 90, 80 and 70 percent coverage (shadow margin) assuming professional (indoor) installation at the customer location.
- d) 90,80 and 70 percent coverage (shadow margin) assuming non-professional (indoor) installation at the customer location.

2001-03-08 IEEE 802.16.3c-01/41

F Regulatory Compliance and Co-existence Criteria

State the level of compliance, or any known issues, related to the following Regulatory and Licensing Requirements.

Authority	Requirement	Compliance
USA (FCC)		
UHF	Part 27 (proposed) – TV/PSA Protection	
WCS-A	Part 27 - limited emissions (DARS protection)	
WCS - Other	Part 27	
Cellular & PCS	Parts 22 and 24	
MDS	Part 21 – ITFS and PSA protection	
3650	Part 27 (proposed)	
4900	Part 27 (proposed)	
Canada		
UHF	??	
PCS	72	
MMCS	??	
3400 - 3600	??	
3600 - 3700	99	
CITEL		
PCS	72	
3400 - 3700	7?	
AUSTRALIA		
???	??	
3400 - 3700	77	
NEW		
ZEALAND		
???	??	
3400 - 3700	??	
ETSI	EN 301 021:P-MP systems, with TDMA access	
3400-4200	method.	
	EN 301 080:FDMA	
	EN 301 124:DS-CDMA	
	EN 301 253:FH-CDMA	
	EN 301 085:Antenna standard	
	DEN/TM-04080:Draft standard in progress for DS-CD/TDMA	
	EN 301 126-2:Conformance test for P-MP	
	EN 301 126-2:Conformance test for P-MP systems	
	EN 301-126-3:Conformance tests for antennas	
	in that band.	

MOTION

That TG3 utilize the Key System Characteristics proposed in Doc IEEE 802.16.3c-01/41 as a reference for ongoing PHY and MAC development.