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1. INTRODUCTION

The Draft Standard for IEEE 802.16c proposes a concatenation of a systematic Reed-Solomon outer block
code with a nonsystematic convolutional inner code. There is no byte interleaving between the RS outer
code and the convolutional inner code; therefore, the benefit of the concatenation is degraded. The problem
with having byte interleaving is the increased transmission delay. This memo presents simulation results for
the BER performance of the concatenated code, postulating an ideal BPSK/QPSK coherent channel.

The convolutional inner code is K=7 punctured rate-1/2, and uses tail biting to create a block size equal to
the RS block size. (This means to start the convolutional encoder at the beginning of the block loaded with
the data at the end of the data block.) To decode without knowledge of the ending state, the Viterbi decoder
passes through the data block more than once to eliminate the startup transient.

The (N,K,T) RS code uses 8-bit bytes, and the block size N is a shortening of 28-1. The byte error correcting
capability is T = (N-K)/2. It is assumed that the RS decoder removes all errors if the number of byte errors
is T or less, fails to decode if the number of byte errors exceeds T, and has a negligible probability of de-
coding incorrectly and adding additional errors.

2. CODING MODES

The shortest code blocks proposed by IEEE 802.16 are

Shortened RS code Punctured convolutional code Overall code rate
(24,18,3) Rate-2/3 Rate-1/2
(81,72,4) Rate-3/4 Rate-2/3
(30,26,2) Rate-5/6 Rate-0.722

The longest code blocks proposed by IEEE 802.16c are

RS code Convolutional code Overall code rate
(64,48,8) Rate-2/3 Rate-1/2
(108,96,6) Rate-3/4 Rate-2/3
(120,108,6) Rate-5/6 Rate-3/4

SIMULATED BER PERFORMANCE OF CONCATENATED CODE WITHOUT BYTE INTER-
LEAVING

The concatenated code was simulated with unquantized soft-decision Viterbi decoding. The path memory
of the Viterbi decoder is 64 bits. In the simulations, the Viterbi decoder starts at the beginning of each data
block with all states set to the same metric value and decodes twice, outputting to the RS decoder only on
the second pass. The Viterbi decoder produces a hard binary output, which is presented to the RS decoder
as 8-bit bytes.
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The simulation counts the number of byte errors in the code block to determine whether the errors can be
corrected by the RS decoder. If the RS decoder fails to decode, the number of bit errors is the actual number
in the data bytes of the systematic RS code.

Simulation results of BER for the concatenated code are plotted in Figure 1 for the shortest code blocks and
in Figure 2 for the longest code blocks. As already stated, the convolutional code has tail biting over the
block length. For comparison, the union bound on theoretical BER performance of the convolutional code
by itself  is also plotted in Figure 1[1; p 243-249]. As a check between theory and the simulation, the simu-
lated BER performance of Viterbi decoding with tail biting is plotted in Figure 1 for two code rates and is
seen to be in excellent agreement with the theoretical curves even for the shortest code blocks.

COMPUTED BER PERFORMANCE OF CONCATENATED CODE WITH IDEAL BYTE IN-
TERLEAVING

For comparison, the BER performance of the concatenated code is obtained assuming ideal byte interleav-
ing, so the byte errors occur independently in the code word. The simulation measures the average prob-
ability of a byte error at the output of the Viterbi decoder and computes the probability of getting more than
T byte errors using the binomial distribution. For the computation, the number of bit errors in an erroneous
byte is assumed to be four. The results are plotted in Figure 3.

3. CONCLUSIONS

The expected advantage of the concatenated code is a steeper behavior of the BER as a function of Eb/No.
However, for the shortest block lengths, the concatenated code without byte interleaving is better than the
convolutional code by itself at the same overall code rate only for a BER below 10-8. For the longest block
lengths, the concatenated code is better only for a BER below roughly 10-7. With ideal byte interleaving, the
concatenated code for the shortest block lengths is better only for a BER below roughly 10-5 or higher.

It is theoretically possible to improve the performance of the concatenated code somewhat by implementing
a Viterbi decoder that outputs soft binary decisions. This flags some erroneous bytes as erasures enabling
the RS decoder to do errors + erasures decoding. However, it is judged that the potential improvement is
small and would be at the cost of a much greater decoding complexity.
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FIG 1. CONCATENTATED R-S AND CONVOLUTIONAL ON IDEAL BPSK/QPSK CHANNEL

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

5 5.5 6 6.5 7 7.5 8

Eb/No, DB

D
E

C
O

D
E

D
 B

E
R

RATE-5/6 + RS(30,26)
 = RATE-0.722

RATE-2/3 + RS(24,18)
 = RATE-1/2

RATE-3/4 + RS(81,72)
 = RATE-2/3

RATE-3/4

RATE-2/3

RATE-1/2

CONCATENTED BLOCKS USE TAIL BITING
 IN SIMULATION

CONVOLUTIONAL CODE PERFORMANCE FROM CLARK AND CAIN

RATE-3/4, 30 BYTE 
 TAIL BITING

RATE-1/2, 24 BYTE 
TAIL BITING



5

FIG 2. CONCATENTATED R-S AND CONVOLUTIONAL ON IDEAL BPSK/QPSK CHANNEL
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FIG 3. CONCATENTATED R-S AND CONVOLUTIONAL ON IDEAL BPSK/QPSK CHANNEL
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