This document contains a proposal for the DL preamble of a OFDMA system.

This proposal provide the DL preamble of the OFDMA system.

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Proposal of Preamble for OFDMA

PanYuh Joo, CH Suh, DS Park, Katz Marcos
Samsung Electronic

1. References
[1] P802.16a-2003
[1] 80216d-03_01 TGd working document

2. Introduction
In the PIEEE 802.16a-2003, the Preambles pilot modulation (section 8.5.9.4.3.1 line 51) is defined as: “The initialization vector of the pilot modulation PRBS (defined in 8.5.9.4.3) for the symbol in which the DL-MAP message starts, and two consecutive symbols thereafter, is [0101010101]. These three symbols serve as the OFDMA DL preamble, in the sense that they indicate where the OFDMA frame starts. The pilots shall be boosted and shall be modulated according to the following formula:"

\[
\begin{align*}
\text{Re}\{c_k\} &= \frac{8}{3}\left(\frac{1}{2} - w_k\right) \\
\text{Im}\{c_k\} &= 0
\end{align*}
\]

(79)

The Pilot Modulation is defined in the section 8.5.9.4.3 line 3 of the 802.16aD7 document as: “Pilot carriers shall be inserted into each data burst in order to constitute the Symbol and they shall be modulated according to their carrier location within the OFDMA symbol. The PRBS generator depicted hereafter shall be used to produce a sequence, \(w_k\). The polynomial for the PRBS generator shall be \(X^{11} + X^9 + 1\).”

The Peak-to-Average Power Ratio (PAPR) of this preamble is \textbf{5.2992 dB}

3. Technical discussion
This document recommends to change the DL preamble of the OFDMA mode in the TG d document [2]. A enhanced DL preamble with significantly reduced PAPR is proposed here.
In this contribution we propose to use the following binary sequence for the DL preamble:

This new preamble sequence has a PAPR of 4.2dB. Thus, in terms of PAPR, a considerable 1.1 dB gain can be obtained in comparison to the previous sequence.

5. Replace the text in page 217 in [1] with:

Replace the paragraph:

“The initialization vector of the pilot modulation PRBS (defined in 8.5.9.4.3) for the symbol in which the DL-MAP message starts, and two consecutive symbols thereafter is [01010101010]. These three symbols serve as the OFDMA DL preamble, in the sense that they indicate where
the OFDMA frame starts. The pilots shall be boosted and shall be modulated according to the following formula:”

With:
“The following sequence serves as the OFDMA DL preamble, in the sense that it indicates where the OFDMA frame starts. The pilots shall be boosted and shall be modulated according to the following formula:”
and add proposed sequence as Downlink preamble of the 2048 OFDMA mode.

6. Conclusion
The new proposed sequence has lower PAPR than the previously used one (4.2 dB in comparison to the 5.3 dB). We propose to add this sequence into TG d working document [2] for OFDMA DL preamble purposes.