Project	IEEE 802.16 Broadband Wireless Ac	cess Working Group < <u>http://ieee802.org/16</u> >		
Title	Supplement for comments from Yiga	l Leiba		
Date Submitted	2004-03-13			
Source(s)	Yigal Leiba	Voice: +972-3-9528440 Fax: +972-3-9528805		
	Runcom Ltd.	vigall@runcom.co.il		
	Hachoma 2 St. 75655	<i>J-8</i>		
	Rishon Lezion, Israel			
Re:	Sponsor ballot on IEEE P802.16-REVd/D3-2004	4		
Abstract	Supplementary text and drawings to con	nments submitted to sponsor ballot		
Purpose	Adopt text into the standard			
Notice	This document has been prepared to assist IEEE the contributing individual(s) or organization(s). content after further study. The contributor(s) re- herein.	802.16. It is offered as a basis for discussion and is not binding on The material in this document is subject to change in form and serve(s) the right to add, amend or withdraw material contained		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.			
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 < <u>http://ieee802.org/16/ipr/patents/policy.html</u> >, use of patent(s), including patent applications, if developing committee and provided the IEEE re applicants under reasonable terms and condition	5 Patent Policy and Procedures (Version 1.0) including the statement "IEEE standards may include the known there is technical justification in the opinion of the standards- ceives assurance from the patent holder that it will license s for the purpose of implementing the standard."		
	Early disclosure to the Working Group of patent reduce the possibility for delays in the developm will be approved for publication. Please notify th written or electronic form, of any patents (grante consideration by or has been approved by IEEE 802.16 web site http://ieee802.org/16/ipr/paten	information that might be relevant to the standard is essential to ent process and increase the likelihood that the draft publication the Chair <mailto:r.b.marks@ieee.org> as early as possible, in ed or under application) that may cover technology that is under 802.16. The Chair will disclose this notification via the IEEE ts/notices>.</mailto:r.b.marks@ieee.org>		

1. Active AAS scan DL scan

Update the text in page 464, line 1 (8.4.4.7) with the following,

8.4.4.7 Optional active DL AAS scan

Sub-channels 3058 and 3159 of the DL frame may be dedicated at the discretion of the BS for active AAS scanning. When these subchannels are used for this purpose, they shall not be allocated in the normal DL-MAP message and shall be used only on the AAS portion of the DL sub-frame. These sub-channels will be used to transmit the AAS_DL_Scan_IE(), whose physical construction is shown in Figure aaa. The AAS_DL_Scan_IE() is transmitted with a well known modulation and coding, namely QPSK rate 1/2 with 4 repetitions.

Figure aaa—Example of allocation for AAS_DL_Scan IE

The contents of the AAS_DL_Scan_IE() payload is described by Table bbb.

Table bbb—OFDMA AAS_DL_Scan_IE format

Syntax	Size	Notes
AAS_DL_Scan_IE() {		
AAS beam direction index	6 bits	This index shall correspond to the direction the AAS beam is pointing at. The range of angles the AAS element should be linearly covered by the range 0-63 of this field.
<pre>Private_Ranging_Allocation_IE() {</pre>		
OFDMA Symbol Ranging Slot offset	10<u>12</u> bits	
	6 bits	
Sub-channel offset		
	7 <u>5</u> bits	
No. OFDMA Symbols <u>Ranging</u> Slots		
Ranging Method	2 bits	 00 - Initial Ranging over two symbols 01 - Initial Ranging over four symbols 10 - BW Request/Periodic Ranging over one symbol 11 - BW Request/Periodic Ranging over three symbols
}		
<pre>Private_MAP_Allocation_IE() {</pre>		
OFDMA Symbol <u>Slot</u> offset	10 <u>12</u> bits	
Sub-channel offset	5 bits	

Boosting	3 bits	000: normal (not boosted); 001: +6dB; 010: -6dB; 011: +9dB; 100: +3dB; 101: -3dB; 110: -9dB; 111: -12dB;
No. OFDMA Symbols <u>Slots</u>	9<u>8</u> bits	
No. Sub-channels	5 bits	
}		
}		

The AAS_DL_Scan_IE() is transmitted by the BS with in a specific direction of the AAS beam, and includes a preamble to facilitate channel equalization by the AAS SS. The preamble used in sub-channels

30, 31 is defined in section 8.4.6.1.1, and shall be selected to have the same segment number as the DL frame preamble, and the cell ID shall equal (*DL Preamble cell ID* + 16) mod 32. The IE is composed of the Private_Ranging_Allocation_IE() that indicates to the AAS SS a suitable slot to perform UL ranging. The BS should point its AAS beam to appropriate direction in the time indicated by this IE, such that it can receive the SS UL ranging. Should a response to the UL ranging attempt by the SS fail to arrive, the SS shall apply the exponential backoff algorithm for selecting the next opportunity to perform UL ranging.

The other part of the AAS_DL_Scan_IE() is a Private_MAP_Allocation_IE(). This IE indicates to the AAS

SS where and when it might find its private DL-MAP and in the next DL sub-frame, such that AAS SS can start the process of network entry. An AAS SS may respond to the AAS_DL_Scan_IE() when performing initial network entry, and also as a means of tracking whether it has shifted position with regards to the direction the AAS beam should be pointing in order to communicate with it.

2. Fast Feedback channel

Update the text in page 475, line 12, (8.4.5.4.5) with the following,

8.4.5.4.5 ARQ-ACK FAST_FEEDBACK message mapping

Each <u>ARQ_ACK_FAST_FEEDBACK</u> message occupies one <u>ARQ_ACK_FAST_FEEDBACK</u> Slot which consists the UL preamble and the <u>ARQ_ACK_FAST_FEEDBACK</u> message payload. <u>ARQ_ACK_FAST_FEEDBACK</u> messages are mapped in to the region marked by UIUC=0 in the UL-MAP, in a time-first order, as shown in Figure ddd.

Figure ddd—Mapping order of ARQ-ACK FAST_FEEDBACK messages to the ARQ-ACK FAST_FEEDBACK region

Replace occurrences of 'ARQ_ACK' with 'FAST_FEEDBACK' in, page 472, line 58 (table 238) page 55, line 36 (table 6) page 57, line 8

Remove the last line from table 280 on page 608, line 25.

Update the text in page 60, line 1, (6.4.2.2.6) with the following,

6.4.2.2.6 ARQ_ACK Fast-feedback allocation subheader

The format of the <u>ARQ_ACK FAST_FEEDBACK</u> allocation subheader is specified in Table ccc. The <u>ARQ_ACK</u> <u>FAST_FEEDBACK</u> allocation sub-header, when used, shall always be the last per-PDU subheader as specified in 6.4.2.2.

Table ccc—ARQ_ACK FAST_FEEDBACK allocation subheader format

Syntax	Size	Notes
ARQ_ACK FAST FEEDBACK allocation		
Subheader {		
Allocation offset	6 bits	
Frame offset Feedback Type	2 bits	<u>00 – Fast DL measurement</u>
		01 – Fast MIMO feedback, antenna #0
		<u>10 – Fast MIMO feedback, antenna #1</u>
		<u>11 – Reserved</u>
}		

Allocation offset

Defines the offset, in units of slots, from the beginning of the ARQ_ACK uplink bandwidth allocation (8.4.5.4.5), of the slot in which the SS servicing the CID appearing in the MAC generic header, must send an ARQ_ACK feedback message for the connection associated with the CID value. Range of values 0 to 63. <u>The allocation applies to the UL sub-frame of the next frame.</u>

Frame offset

Defines the offset, in units of frames, from the frame following the frame containing the subheader, in which an ARQ_ACK feedback message shall be sent. Range of values 0 to 3.

Add a new section in page 574, line 62, with the following text:

8.4.5.4.5 FAST_FEEDBACK channels

Fast feedback slots may be individually allocated to SS for transmission of PHY related information that requires fast response from the SS. The allocations are done in unicast manner through the FAST_FEEDBACK MAC subheader, and the transmission takes place in a specific UL region designated by UIUC=0.

Each Fast-feedback slot consists of 3 OFDMA slots mapped along the time axis in a manner similar to the mapping of normal uplink data. A fast feedback slot uses QPSK modulation on the 96 sub-carriers it contains, and can carry a data payload of 4 bits. Table eee defines the mapping between the payload bit sequences and the subcarriers modulation.

4 bit payload	Code word for modulation
0000	0xbf0382090c3628b4f3ba299c
0001	0xa814951e1b213fa3e4ad3e8b
0010	0x922eaf24211b0599de9704b1
0011	0x8539b833360c128ec98013a6
0100	0xf14dcc47427866fabdf467d2
0101	0xe65adb50556f71edaae370c5
0110	0xdc60e16a6f554bd790d94aff
0111	0xcb77f67d78425cc087ce5de8
1000	0x3488098287bda33f7831a217
1001	0x239f1e9590aab4286f26b500
1010	0x19a524afaa908e12551c8f3a
1011	0x0eb233b8bd879905420b982d
1100	0x7ac647ccc9f3ed71367fec59
1101	0x6dd150dbdee4fa662168fb4e
1110	0x57eb6ae1e4dec05c1b52c174

Table eee—FAST_FEEDBACK channel subcarrier modulation

1111 0x40fc7df6f3c9d74b0c45d663

The fast feedback slot includes 4 bits of payload data, whose encoding depended on the instruction given in the FAST_FEEDBACK subheader. The following sections define these encoding.

8.4.5.4.5.1 Fast DL measurement feedback

When the FAST_FEEDBACK subheader *Feedback Type* field is '00' the SS shall report the S/N it measures on the DL. The following formula shall be used,

Payload bits nibble =
$$\begin{cases} 0 & , S/N < -2dB \\ n & , 2 \cdot n - 4 < S/N < 2 \cdot n - 2 \text{ where } 0 < n < 15 \\ 15 & , S/N > 26dB \end{cases}$$
 (fff)

8.4.5.4.5.2 Fast MIMO feedback

When the FAST_FEEDBACK subheader *Feedback Type* field is '01' or '10' the SS shall report the MIMO coefficient the BS should use for best DL reception (see section 8.4.8.8). The following mapping shall be used for the complex weights,

Figure ggg—Mapping of MIMO coeffcients to fast MIMO feedback payload bits

(hhh)

3. Update sub-channel concatenation block sizes

Update the text in page 537, line 55, (8.4.9.2) with the following,

8.4.9.2 Encoding

The coding method used as the mandatory scheme will be the tail biting convolutional encoding specified in section 8.4.9.2.1 and the optional modes of encoding in sections 8.4.9.2.2 and 8.4.9.2.3 shall be also sup-ported.

The encoding block size shall depend on the number of subchannels/mini-subchannels allocated and the modulation specified for the current transmission. Any encoding block shall be fully contained within one OFDMA symbol.

Concatenation of a number of subchannels/mini-subchannels shall be performed when using QPSK modulation in order to make larger blocks of coding where it is possible, with the limitation of not passing the largest block under the same coding rate (the block defined by 64QAM modulation), concatenation shall be performed only over subchannels from the same time burst. Table 251 specifies the concatenation of sub-channels for different allocations and modulations. In the following sections parameters for encoding 64QAM rate 1/2 is given in the tables, these should be used for the concatenated case of the QPSK only, because there is no use of this combination of modulation and coding rate.

For any modulation and FEC rate, given an allocation of n subchannels, we define the following parameters

j = parameter dependent on the modulation and FEC rate

n = number of allocated subchannels

k = floor(n / j)

 $m = n \mod j$

Table iii shows the rules used for subchannel concatenation,

Table iii—Subchannel concatenation rule

<u>Number of</u> subchannels	Subchannels concatenated
<u>n <= j</u>	1 block of n subchannels
<u>n > j</u>	(k-1) blocks of j subcahnnels
	<u>1 block of ceil((m+j)/2) subchannels</u>
	<u>1 block of floor((m+j)/2) subchannels</u>

Table 251—Encoding Subchannel concatenation for different allocations and modulations

Number of subchannels/ mini-subchannels allocated	Modulation	Subchannels concatenated	Comments
1	QPSK	1	When using 1 Subchannel concat enation
			is not performed
2	QPSK	2	Using the 16QAM configuration
3	QPSK	3	Using the 64QAM configuration

4	QPSK	<u>2,2</u>	Using twice the 16QAM configuration
5	QPSK	3,2	Using the 64QAM then the
			16QAM configuration
6	QPSK	3,3	Using twice the 64QAM configuration
n>6 (mod(n,3)=1)	QPSK	3,,3,2,2	Using 64QAM, last two encoding
			done with 16QAM configuration
n>6 (mod(n,3)=2)	QPSK	3,,3,3,2	Using 64QAM, last encoding
			done with 16QAM configuration
n>6 (mod(n,3)=0)	QPSK	3,,3,3,3	Using only the 64QAM configuration
Not relevant	16 QAM	1	Concatenation is never performed
Not relevant	64 QAM	1	

Modulation and rate	i
<u>QPSK 1/2</u>	<u>j = 6</u>
<u>QPSK 3/4</u>	<u>j = 4</u>
<u>QAM16 1/2</u>	<u>j = 3</u>
<u>QAM16 3/4</u>	<u>j=2</u>
<u>QAM64 1/2</u>	<u>j = 2</u>
<u>QAM64 2/3</u>	<u>j=1</u>
<u>QAM64 3/4</u>	<u>j = 1</u>

Update the text in page 540, line 1, section 8.4.9.2.1 with the following,

Table 253 defines the basic sizes of the useful data payloads to be encoded in relation with the selected modulation type and encoding rate <u>and concatenation rule</u>.

	QP	SK	16 QAM		64 QAM			
Encoding rate	R=1/2	R=3/4	R=1/2	R=3/4	R=1/2	R=2/3	R=3/4	
Allowed Data	6							
payload		9						
In 48 symbols	12		12					
(bytes)	18	<u>18</u>		18	18			
	24		<u>24</u>			24		
		<u>27</u>					27	
	<u>30</u>							
	<u>36</u>	<u>36</u>	<u>36</u>	<u>36</u>	<u>36</u>			

Table 253—useful data payload for a subchannel

Update table 256 in page 543, line 8, section 8.4.9.2.3.1 with the following,

Modulation	Data	Encoded	Code	Ν	PO	P1	P2	P3
	(bytes)	size (bytes)	rate					
QPSK	6	12	1/2	24	5	0	0	0
QPSK	12	24	1/2	48	13	24	0	24
<u>QPSK</u>	<u>18</u>	<u>36</u>	1/2	72	<u>11</u>	<u>6</u>	<u>0</u>	<u>6</u>
<u>QPSK</u>	<u>24</u>	<u>48</u>	1/2	<u>96</u>	7	<u>48</u>	<u>24</u>	72
<u>QPSK</u>	<u>30</u>	<u>60</u>	1/2	<u>120</u>	<u>13</u>	<u>60</u>	<u>0</u>	<u>60</u>
<u>QPSK</u>	<u>36</u>	<u>72</u>	1/2	<u>144</u>	<u>17</u>	74	72	2
QPSK	9	12	3/4	36	11	18	0	18
<u>QPSK</u>	<u>18</u>	24	3/4	72	<u>11</u>	6	<u>0</u>	<u>6</u>
<u>QPSK</u>	<u>27</u>	<u>36</u>	3/4	<u>108</u>	<u>11</u>	<u>54</u>	<u>56</u>	2
<u>QPSK</u>	<u>36</u>	<u>48</u>	3/4	<u>144</u>	<u>17</u>	74	72	2
QAM16	12	24	1/2	48	13	24	0	24
<u>QAM16</u>	<u>24</u>	<u>48</u>	1/2	<u>96</u>	7	<u>48</u>	<u>24</u>	72
<u>QAM16</u>	<u>36</u>	<u>72</u>	1/2	<u>144</u>	<u>17</u>	74	72	2
QAM16	18	24	3/4	72	11	6	0	6
<u>QAM16</u>	<u>36</u>	<u>48</u>	3/4	<u>144</u>	<u>17</u>	74	72	2
QAM64	18	36	1/2	72	11	6	0	6
QAM64	36	72	1/2	144	17	74	72	2
QAM64	24	36	2/3	96	7	48	24	72
QAM64	27	36	3/4	108	11	54	56	2

Table 256—Optimal CTC channel coding per modulation