This document contains supplemental material for 802.16-REVd sponsor ballot

Purpose
Adopt suggested changes into P802.16-REVd/D4 draft

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Supplemental material for Tgd comments

Itzik Kitroser
Yossi Segal
Yigal Leiba
Zion Hadad
Runcom Technologies Ltd.

General

This contribution provides specific text changes instructions as a supplemental text for 802.16-REVd sponsor ballot. Editorial instruction is indicated by a red bold text with square brackets. Deletions are indicated by a strikethrough text and new text insertion is indicated by an underline.

Specific changes

1. OFDMA Basic definitions and mapping

1.1 Comment:

Comment #257. The current OFDMA PHY contain usage of concepts as Zone and a Segment which are not clearly defined anywhere. A clear definition of the terms is required for a consistency reasons. In addition the OFDMA data mapping referes to FEC block, while the correct term is OFDMA slot.

1.2 Suggested Remedy

[Page 465, line 25, section 8.4.3, change:]

8.4.3 OFDMA slot basic terms definition

8.4.3.1 Slot and Data region

A slot in the OFDMA PHY requires both a time and subchannel dimension for completeness (subchannels are defined in 8.4.6.). An OFDMA slot is one subchannel by two OFDMA symbol.
In OFDMA, a Data Region is a two-dimensional allocation of a group of contiguous subchannels, in a group of contiguous OFDMA symbols. This allocation may be visualized as a rectangle, such as the 4x3 rectangle shown in Figure 209.

![Subchannel offset](image)

Figure 209—Example of the data region which defines the OFDMA allocation

Such a data region can be assigned in the uplink to a specific SS (or a group of subscribers) or can be transmitted in the downlink by the BS as a transmission to a (group of) SS(s).

[Insert new section 8.4.3.2]

8.4.3.2 Segment

A Segment is a subdivision of the set of available OFDMA sub-channels (that may include all available sub-channels). One segment is used for deploying a single instance of the MAC.

8.4.3.3 Permutation Zone

Permutation Zone is a number of contiguous OFDMA symbols, in the DL or the UL, that use the same permutation formula. The DL subframe or the UL subframe may contain more than one permutation zone.

[Remunerate section 8.4.3.2 as 8.4.3.4]

8.4.3.4 OFDMA data mapping

MAC data shall be processed as described in 8.4.9 and shall be mapped to an OFDMA Data Region (see 8.4.3.1) for downlink and uplink using the following algorithms defined below.

Downlink:

1) Segment the data into blocks sized to fit into one FEC block OFDMA slot.

2) Each FEC block may span one or more subchannels in the subchannel axis and two or three OFDMA symbol in the time axis (see Figure 210 and Figure 211). Map the FEC blocks such that the lowest numbered FEC block occupies the lowest numbered subchannel in the lowest numbered OFDMA symbol.

3) Continue the mapping such that the OFDMA symbol index is increased. When the edge of the Data Region is reached, continue the mapping from the lowest numbered OFDMA symbol in the next sub-channel.

Uplink:

1) Segment the data into blocks sized to fit into one OFDMA slot.
2) Each slot shall span one or more subchannels in the subchannel axis and three OFDMA symbol in the time axis (see Figure 210). Map the slots such that the lowest numbered slot occupies the lowest numbered subchannel in the lowest numbered OFDMA symbol.

3) Continue the mapping such that the OFDMA symbol index is increased. When the edge of the UL zone (which is marked with Zone_switch_IE) is reached, continue the mapping from the lowest numbered OFDMA symbol in the next available subchannel.

Figure 210 and Figure 211 illustrates the order in which FEC blocks are mapped to subchannels and OFDMA symbols.

[replace figure 210 with the following figure]

Figure 210—Example of mapping FEC blocks to subchannels and symbols in the uplink
2. **Figure 213 changes**

2.1 **Comment:**

Comment #350 changed the UL allocating scheme to a uni-dimensional scheme. This means that the UL allocations are no longer rectangles, this should be reflected in figure 213. In addition figure 213 does not provide a clear example of the OFDMA frame with multiple zones.

2.2 **Suggested Remedy**

[Page 468, line 5, section 8.4.4.2, change figure 213 (and title) as follows:]
The OFDMA frame may include multiple zones (such as PUSC, FUSC, PUSC with all subchannels, optional FUSC, AMC and optional FUSC with all subchannels), the transition between zones is indicated in the DL-Map by the Zone switch IE (see 8.4.5.3.4). No DL-Map or UL-Map allocations can span over multiple zones. Figure 214 depict OFDMA frame with multiple zones.
3. UL and DL Renumeration

3.1 Comment

Comment #339.

The current subchannels renumbering definition for the UL stating that "no renumberation is done" is wrong, since obviously a renumbering scheme is required.

In addition, figure 215 describes the FCH as transmitted over one OFDMA symbol and two subchannels, and should be two OFDMA symbols over one subchannel.

The example given in figure 216 is wrong, since the standard defines that the FCH is transmitted using a duration of 4 OFDMA subchannels.

3.2 Suggested Remedy

[Page 471, line 4, section 8.4.4.5, replace figure 215 with the following figure]
After decoding the DL_Frame Prefix message within the FCH, the SS has the knowledge of how many and which subchannels are allocated to the PUSC segment. In order to observe the allocation of the subchannels in the downlink as a contiguous allocation block, the subchannels shall be renumbered, the renumbering shall start from the FCH subchannels (renumbered to values 0…11), then continue numbering the subchannels in a cyclic manner to the last allocated subchannel and from the first allocated subchannel to the FCH Subchannels, Figure 217 gives an example of such renumbering for segment 1. For uplink allocation purposes, no renumeration is done after the subchannels definition and the subchannel with the lowest index shall be considered as subchannel 0. For uplink, in order to observe the allocation of the subchannels as a contiguous allocation block, the subchannels shall be renumbered, the renumbering shall start from the lowest numbered allocated subchannel (renumbered to value 0), up to the highest numbered allocated sub-channel, skipping non-allocated sub-channels. Figure 217 gives an example of such renumbering for segment 1.

Figure 215—FCH subchannel allocation for all 3 segments

[Page 471, line 42, section 8.4.4.5, Change the paragraph as indicated]

[Page 472, line 2, section 8.4.4.5, Change figure 216]
Figure 216—Example of renumbering the allocated subchannels for segment 1 in PUSC
4. Data location in another BS IE

4.1 Comment

Comment #359.

The current structure of Data location in another BS IE does not aligned with the changes done to the OFDMA subchannels mapping in the previous receive.

4.2 Suggested Remedy

[Page 479, line 38, section 8.4.5.3.6, Change Table 254 as indicated:]
5. STC figure changes

5.1 Comment

Comment #362 contained instruction to change figure 235, this comment wasn’t implemented due to an unclear instruction, this comment provide the required changes. In addition, the existing figure is relevant for FUSC only, an additional figure is required for the PUSC case.
5.2 Suggested Remedy

[Page 519, line 3, section 8.4.8.2.1, change figure 235 as indicated, change title to make figure relevant to FUSC]

Figure 235—STC usage with OFDMA for FUSC
6. Support of optional features

6.1 Comment

In comment #257, additional optional features were inserted into the OFDMA section. Since new additions are optional, the SS must be able to indicate whether or not it supports those features.

6.2 Suggested Remedy

[Page 607, line 46, Add the following new sections]
11.8.3.7.4 OFDMA SS H-ARQ support

This field indicates whether the SS supports H-ARQ (see 6.3.17). A bit value of 0 indicates “not supported” while 1 indicates “supported”.

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
</table>
| 153 | 1 | Bit# 0: H-ARQ support
| | | Bits# 1–7: reserved, shall be set to 0 | SBC-REQ (see 6.3.2.3.23)
| | | | SBC-RSP (see 6.3.2.3.24) |

11.8.3.7.5 OFDMA SS Permutation support

This field indicates the different optional OFDMA permutation modes (optional PUSC, see 8.4.6.2.4, optional FUSC, see NNN, AMC see 8.4.6.3) supported by a WirelessMAN-OFDMA SS. A bit value of 0 indicates “not supported” while 1 indicates “supported.”

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
<th>Scope</th>
</tr>
</thead>
</table>
| 154 | 1 | Bit# 0: Optional PUSC support
| | | Bit# 1: Optional FUSC support
| | | Bit# 2: AMC support
| | | Bits# 3–7: reserved, shall be set to 0 | SBC-REQ (see 6.3.2.3.23)
| | | | SBC-RSP (see 6.3.2.3.24) |

7. Additional PHY profile

7.1 Comment

The current OFDMA profiles for the licensed bands contain profiles for 1.25MHz, 3.5MHz, 7MHz, 14MHz and 28MHz channel bandwidths. In some scenarios a channel profile of 9MHz is also desirable and is currently missing from the spec.

7.2 Suggested Remedy

[Page 700, line 42, Add the following new section and renumber all subsequent sections]
12.4.3.5 WirelessMAN-OFDMA 9 MHz channel basic PHY Profile

Profile identifier: OFDMA_ProfP4.

Systems implementing OFDMA_ProfP4 shall meet the minimum performance requirements listed in Table 371:

Table 371—Minimum Performance requirements for OFDMA_ProfP6

<table>
<thead>
<tr>
<th>Capability</th>
<th>Minimum Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>9 MHz</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Licensed bands only</td>
</tr>
<tr>
<td>BER performance threshold, BER=10^{-6} (using all subchannels BS/SS)</td>
<td></td>
</tr>
<tr>
<td>QPSK-1/2</td>
<td>≤ -81.5 dBm</td>
</tr>
<tr>
<td>QPSK-3/4</td>
<td>≤ -78.5 dBm</td>
</tr>
<tr>
<td>16QAM-1/2</td>
<td>≤ -74.5 dBm</td>
</tr>
<tr>
<td>16QAM-3/4</td>
<td>≤ -71.5 dBm</td>
</tr>
<tr>
<td>64QAM-2/3 (if 64-QAM supported)</td>
<td>≤ -67.5 dBm</td>
</tr>
<tr>
<td>64QAM-3/4 (if 64-QAM supported)</td>
<td>≤ -65.6 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(Add to sensitivity 10*log10(NumberOfSub-ChannelsUsed/32) when using less subchannels in the BS Rx)</td>
<td></td>
</tr>
<tr>
<td>Reference frequency tolerance</td>
<td>≤ ± 4 ppm</td>
</tr>
<tr>
<td>BS</td>
<td></td>
</tr>
<tr>
<td>SS to BS synchronization tolerance</td>
<td>≤ 50 Hz</td>
</tr>
<tr>
<td>Frame duration code set</td>
<td>{2,4,5}</td>
</tr>
</tbody>
</table>