Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16 >		
Title	Sub-channel Reuse for CQICH Fast Feed-back Channels in Multiple Antenna Base Stations		
Date Submitted	2004-11-15		
Source(s)	Inseok Hwang ,Jaehee Cho, Seungjoo Maeng, Jaeho Jeon, Soonyoung Yoon, Jeong-Heon Kim, Jaehyok Lee, Myungkwang Byun, Panyuh Joo, Jiho Jang, Sanghoon Sung, Hoon Huh, janghoon yang, Jihyun Kim		
	Samsung Electronics Co. Ltd.		
Re:	Recirculation of P802.16 REVe/D5		
Abstract	Sub-channel reuse scheme is proposed to reduce bandwidth overhead of CQICH fast feed-back channels in multiple antenna base stations.		
Purpose	Adoption of suggested changes into P802.16e/D6		
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.		
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-		
	Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices>.</mailto:r.b.marks@ieee.org>		

(For readers: The changes made during revision process are underlined and written in pink. The text changes proposed in the original contribution remain in blue)

Problem Definition

The required number of fast feed-back channels increases as the number of data streams increases in multiple antenna mode. To reduce the uplink bandwidth overhead, there needs to utilize the SNR gain from multiple receiver antennas at BS.

Proposed Solution

The operating point of CQICH fast feedback channels, which can be specified as signal to noise ratio per antenna, decreases as the number of received antennas at BS increases and it can be well below 0 dB SNR. Under this situation, one sub-channel region for CQICH feedback can be allocated for multiple CQICH signaling when the BS provision multiple receive antennas, wherein each of multiple CQICH sub-channels has its own <u>codeword set</u> and <u>covering</u> sequence offset for co-channel interference averaging. <u>To keep backward compatibility, we use fast feedback orthogonal modulation vectors in Table 295 of P802.16-REVd/D5.</u>

The simulations results in Fig. 1 below are obtained using 5 bit codeword at BS with two receive antennas. We can observe that the operating point of 1 % error rate increases to -1.5 dB when CQICH codeword are reused by factor two in AWGN channels. The original point (not shown here) was -5.0 dB. The SNR degradation of 3.5 dB would be compensated when we employ more than two receive antennas at BS. To verify this argument, additional performance simulations were carried out for 4 antenna diversity reception. The results are illustrated in Fig. 2.

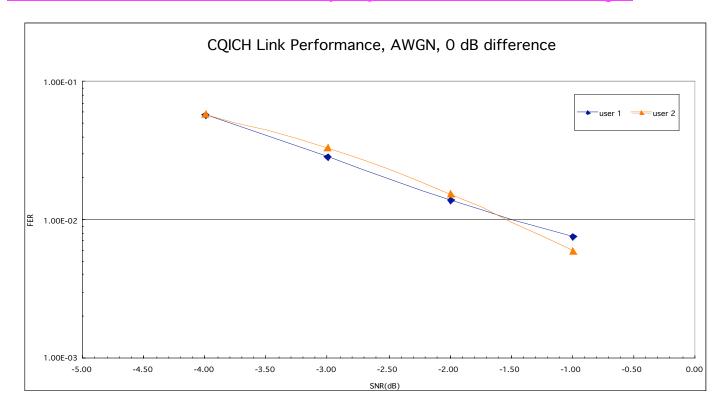


Fig. 1. Simulation results of 5 bit codeword (only covering offset applied)

In this second simulation, the 6 bit codeword set in the current text was employed when the number of receive antenna at BS is 2. For the proposed sub-channel reuse scheme, the second user employed the optimized second 6 bit codeword set with covering shift offset of 40. The results in Fig. 2 show that the SNR gain from 4 receive antenna is enough to accommodate two users in a single sub-channel. Specifically, under the operation point of 1 % PER and -4.0 dB SNR per

2004-11-15 IEEE C802.16e-04/448r1

antenna, one sub-channel for CQICH signaling can be allocated to different two users.

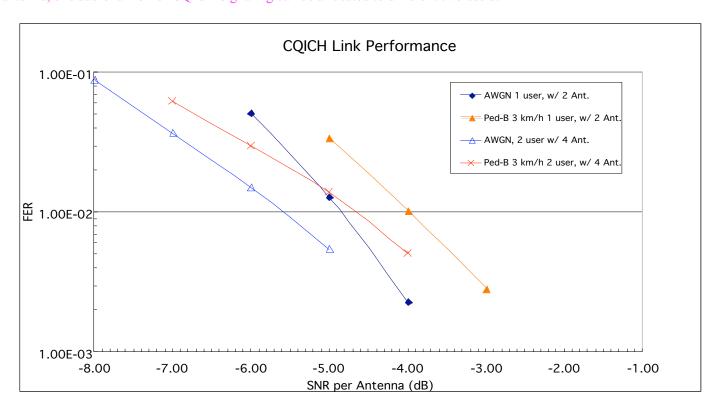


Fig. 2. Simulation results of 6 bit codeword

Suggested text changes to 16.e standard

[Create Sec. 8.4.5.4.10.10 as follows]

8.4.5.4.10.10 Optional Sub-channel Reuse for FAST FEEDBACK channel

If BS supports multiple receive antenna for uplink reception, the number of Fast Feedback channels for a given uplink sub-channel with UIUC = 0 can be increased by <u>using different codeword set and different covering sequence offsets as in Table aaa.</u> The <u>covering sequences for reused sub-channels</u> are obtained by shifting the BS-specific covering sequences in Sec 8.4.9.4.1.

Table aaa Modula	<u>tion Scheme for</u>	<u>Re-used</u> Fast	feedback channels
------------------	------------------------	---------------------	-------------------

Reuse Index	Code word set	Shift offset	<u>Description</u>
00	$\underline{\mathbf{S}}_{\underline{0}}$	<u>0</u>	Use codeword set S ₀ and apply BS-specific covering sequences in Sec 8.4.9.4.1.
01	<u>S</u> ₁	<u>40</u>	Use codeword set S_1 and apply BS-specific covering sequences in Sec 8.4.9.4.1. shifted by 40 offset
10 - 11	Reserved	Reserved	

The reuse indexes are assigned by CQICH Enhanced allocation IE. At MS, each modulated sub-carrier in the assigned sub-channel is multiplied by covering BPSK signals, which is obtained by shifting the BS-specific sequences in Sec 8.4.9.4.1. The S_0 and S_1 for 4 bit (5 bit) signaling are obtained by taking the first and the last 16 (32) code-words in Table

296a (Table 296b). For 6 bit signaling, MS utilizes 64 code-words in Table 296b for S_0 and those in Table 296d for S_1 , respectively.

Table 296d – Additional Fast Feedback channel subcarrier modulation with 6 bit

	Fast Feedback vector indices per Tile	
6 bit payload	<u>Tile(0), Tile(1),, Tile(5)</u>	
0b000000	4,6,5,2,3,1	
06000001	5,7,4,3,2,0	
0b000010	6,4,7,0,1,3	
0b000011	7,5,6,1,0,2	
0600011	0,2,1,6,7,5	
0b000101	1,3,0,7,6,4	
0b000110	2,0,3,4,5,7	
0b000111	3,1,2,5,4,6	
0b001000	6,2,6,4,4	
0b001001	7,3,7,5,5	
0b001010	4,0,4,6,6,6	
0b001011	5,1,5,7,7	
060011100	2,6,2,0,0	
0b001101	3,7,3,1,1,1	
0b001110	0,4,0,2,2,2	
0b001111	1,5,1,3,3,3	
0b010000	0,5,3,5,6,0	
0b010001	1,4,2,4,7,1	
0b010010	2,7,1,7,4,2	
0b010011	3,6,0,6,5,3	
0b010100	4,1,7,1,2,4	
0b010101	5,0,6,0,3,5	
0b010110	6,3,5,3,0,6	
0b010111	7,2,4,2,1,7	
0b011000	7,0,2,7,2,3	
<u>0b011001</u>	6,1,3,6,3,2	
<u>0b011010</u>	5,2,0,5,0,1	
0b011011	4,3,1,4,1,0	
<u>0b011100</u>	3,4,6,3,6,7	
0b011101	2,5,7,2,7,6	
0b011110	1,6,4,1,4,5	
<u>0b011111</u>	0,7,5,0,5,4	
<u>0b100000</u>	2,1,0,3,1,5	
<u>0b100001</u>	<u>3,0,1,2,0,4</u>	
<u>0b100010</u>	0,3,2,1,3,7	
<u>0b100011</u>	1,2,3,0,2,6	
<u>0b100100</u>	<u>6,5,4,7,5,1</u>	
<u>0b100101</u>	7,4,5,6,4,0	
<u>0b100110</u>	4,7,6,5,7,3	
<u>0b100111</u>	<u>5,6,7,4,6,2</u>	
<u>0b101000</u>	3,3,4,0,7,2	
<u>0b101001</u>	<u>2,2,5,1,6,3</u>	
<u>0b101010</u>	1,1,6,2,5,0	
<u>0b101011</u>	0,0,7,3,4,1	
<u>0b101100</u>	<u>7,7,0,4,3,6</u>	
<u>0b101101</u>	<u>6,6,1,5,2,7</u>	

2004-11-15	IEEE C80
<u>0b101110</u>	<u>5,5,2,6,1,4</u>
<u>0b101111</u>	<u>4,4,3,7,0,5</u>
<u>0b110000</u>	1,7,7,6,0,7
<u>0b110001</u>	<u>0,6,6,7,1,6</u>
<u>0b110010</u>	<u>3,5,5,4,2,5</u>
<u>0b110011</u>	<u>2,4,4,5,3,4</u>
<u>0b110100</u>	<u>5,3,3,2,4,3</u>
<u>0b110101</u>	4,2,2,3,5,2
<u>0b110110</u>	<u>7,1,1,0,6,1</u>
<u>0b110111</u>	6,0,0,1,7,0
<u>0b111000</u>	<u>5,4,1,1,5,6</u>
<u>0b111001</u>	<u>4,5,0,0,4,7</u>
<u>0b111010</u>	<u>7,6,3,3,7,4</u>
<u>0b111011</u>	<u>6,7,2,2,6,5</u>
<u>0b111100</u>	<u>1,0,5,5,1,2</u>
<u>0b111101</u>	<u>0,1,4,4,0,3</u>
<u>0b111110</u>	<u>3,2,7,7,3,0</u>
<u>0b111111</u>	<u>2,3,6,6,2,1</u>

[Modify the following Table 298a in 8.4.5.4.15 "CQICH Enhanced Allocation IE Format"]

Table 298a. CQICH Enhanced allocation IE format

Syntax	Size (bits)	Notes
CQICH_Enhanced_Alloc_IE(){		
Extended DIUC	4	0x09
Length	4	Length in bytes of following fields
CQICH_ID	variable	Index to uniquely identify the CQICH resource assigned to the MSS
Period (=p)	2	A CQI feedback is transmitted on the CQICH every 2^p frames
Frame offset	3	The MSS starts reporting at the frame of which the number has the same 3 LSB as the specified frame offset. If the current frame is specified, the MSS should start reporting in 8 frames
Duration (=d)	3	A CQI feedback is transmitted on the CQI channels indexed by the CQICH_ID for 10 x 2^d frames. If d == 0, the CQICH is deallocated. If d == 111, the MSS should report until the BS command for the MSS to stop.
N _T actual BS antennas	3	001 = Reserved 010 = 2 actual antennas 011 = 3 actual antennas 100 = 4 actual antennas 101 = 5 actual antennas 110 = 6 actual antennas 111 = 7 actual antennas 000 = 8 actual antennas
Feedback_type	2	00 = Fast DL measurement 01 = MIMO Antenna Feedback 10 = MIMO mode and permutation mode feedback 11 = Reserved
CQICH_Num	4	Number of CQICHs assigned to this CQICH_ID is (CQICH_Num+1)
for (i=0;i <cqich_num;i++) td="" {<=""><td></td><td></td></cqich_num;i++)>		

2004-11-15 IEEE C802.16e-04/448r1

Allocation index	6	Index to the fast feedback channel region marked by UIUC=0	
Reuse index	2	Modulation scheme in Sec. 8.4.5.4.10.10 $00 = \text{Use S}_0$ and apply no shift offset (Default) $01 = \text{Use S}_1$ and apply 40 shift offset 10-11 = Reserved	
if (Feedback_type != 10) { MIMO_permutation_feedback cycle }	2	00 = No MIMO and permutation mode feedback 01 = the MIMO and permutation mode indication shall be transmitted on the CQICH indexed by the CQICH_ID every 4 frames. The first indication is sent on the 8th CQICH frame. 10 = the MIMO mode and permutation mode indication shall be transmitted on the CQICH indexed by the CQICH_ID every 8 frames. The first indication is sent on the 8th CQICH frame. 11 = the MIMO mode and permutation mode indication shall be transmitted on the CQICH indexed by the CQICH_ID every 16 frames. The first indication is sent on the 16th CQICH frame.	
Padding	variable	The padding bits are used to ensure the IE size is integer number of bytes.	

[Add the text as follows in 11.8.3.7.7 "Uplink control channel support"]

11.8.3.7.7 Uplink control channel support

[Change the text as follows]

Type	Length	Value	Scope
XXX	1	Bit# 0: FAST_FEEDBACK	SBC-REQ (see 6.3.2.3.23)
		Bit# 1: Enhanced FAST_FEEDBACK	SBC-RSP (see 6.3.2.3.24)
		Bit# 2: UL ACK	
		Bit# 3: Enhanced UL ACK	
		Bit# 4: Optional FAST_FEEDBACK for 4 bit payload	
		Bit# 5: Optional FAST_FEEDBACK for 5 bit payload	
		Bit# 6: Optional FAST_FEEDBACK with Reuse	
		Bit# 7: Reserved, shall be set to zero	