2004-03-18 IEEE 802.16e-04/47r1

Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16 >
Title	Applying scalability for the OFDMA PHY layer
Date Submitted	2004-03-18
Source(s)	Yossi Segal Itzik Kitroser Fax: +972-3-9528440 Yigal Leiba Zion Hadad Runcom Technologies Ltd. 2 Hachoma St. 75655 Rishon Lezion, Israel Voice: +972-3-9528440 Fax: +972-3-9528805 yossis@runcom.co.il tizikk@runcom.co.il yigall@runcom.co.il zionh@runcom.co.il
Re:	Contribution on comments to IEEE 802.16e-03/07r6
Abstract	Contribution elaborating on possible extension of the 802.16d OFDMA PHY layer
Purpose	To be integrated into IEEE 802.16e-03/07r7 document
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices .

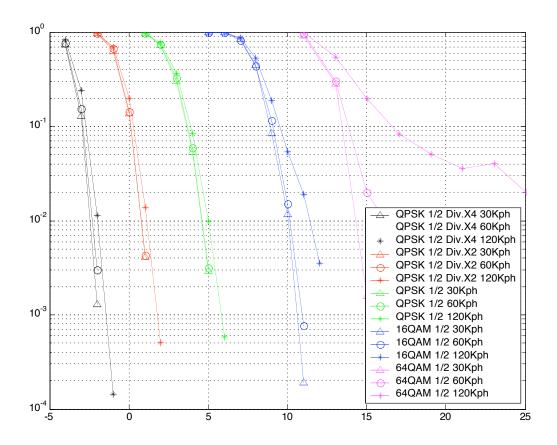
Applying scalability for the OFDMA PHY layer

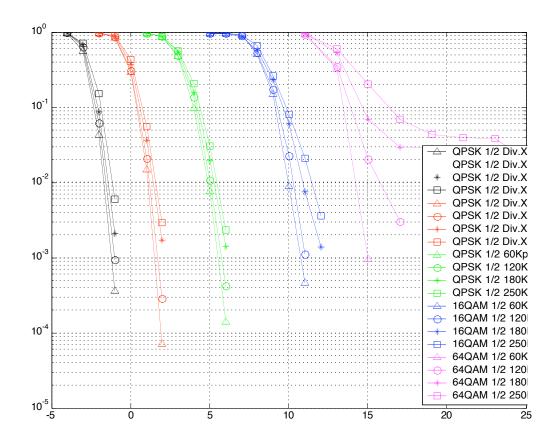
Yossi Segal Yigal Leiba Itzik Kitroser Zion Hadad Runcom

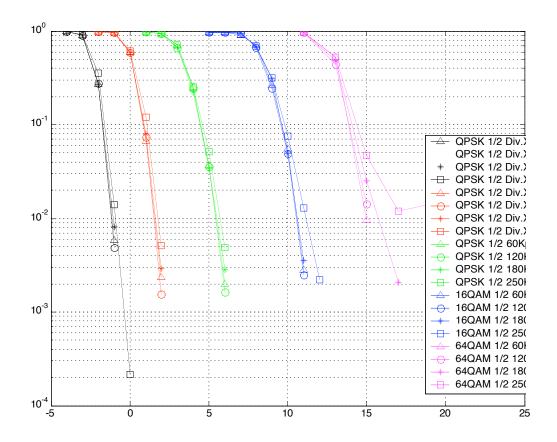
1 Introduction

The OFDMA PHY defined in the 802.16d uses a 2K FFT for its operation. This configuration shows good performance for channels using high bandwidth allocation (as will be shown in the document). In order to extend its performance for lower bandwidth channels it is recommended to apply some scalability to the 802.16d OFDMA PHY. This document shall elaborate on a simple and effective way to make these changes.

2 Evaluation of performance


The current PHY performance was evaluated in former documents:


- IEEE C802.16d-03/78r1 Coverage/Capacity simulations for OFDMA PHY in with ITU-T channel model
- IEEE C802.16e-04/16 Coverage/Capacity simulations for OFDMA PHY in ITU-T channel model including MRC, STC, AAS results


The performance of the PHY layer has shown very good performance even for high mobility (especially for high channel bandwidth >= 5MHz). Some of the results are reproduced hereafter for convenience and for further analysis; the simulation environment included the following:

- DL PUSC/FUSC models of the IEEE802.16d OFDMA PHY
- Real channel estimation process
- Block sizes of 384-576bits (depending on modulation)
- Covolutional Turbo Code scheme using code rate _
- Phase noise model with a power of -85dBc/Hz flat up to 10KHz and then reducing 20dB/dec up to -120
- ITU-B model for vehicular speeds

The following graphs presents the performance of the PHY for 2.5,5,10MHZ channel bandwidth (title of the graph describes the scenario, legend describes the different modulations and speeds tested).

The performance for 10MHz channel BW shows clearly that the PHY supports speeds of up to 250Kmph even for 16QAM and 180Kph for 64QAM with a small degradation. For lower bandwidth the maximum speed declines but the 2K mode can support very high mobility with lower modulations (where for higher modulations some degradation is noticeable).

Taking the performance of the PHY into consideration and the IEEE802.16d definition to support bandwidths starting from 1.25MHz, it is evident that for the IEEE802.16e some additions to standard are appropriate to support very high mobility better for low channel bandwidth allocations.

3 Suggested modifications (Scalability)

A possible solution to the requirements of the IEEE802.16e and the actual OFDMA PHY defined for IEEE802.16d is to use smaller FFT sizes in order to compensate on the large symbol times for lower bandwidths enforced by the 2K FFT. The solution can include adding a configuration of the current OFDMA PHY to be used with 1K or/and 512 FFT size.

Scaling the performance of the 2K mode in the graphs shown before it could be deducted that the performance of the 2K mode FFT for 10MHz will be reproduced by a 512 FFT sizes for 2.5MHz (and so on).

These new definitions for 1K/512 FFT size could be easily incorporated as optional elements of the OFDMA PHY by changing some basic parameters. The major thing to be changed is the definition of the symbol structure for these FFT sizes (duplicating table 247 and 247a – new addition).

4 Specific text changes

[Add the following text at the end of section 8.4.1]

The mandatory OFDMA PHY mode that shall be supported by all SS is based on a 2048-FFT. Other FFT sizes may optionally be employed as well. These FFT sizes are scalable to the channel BW in which they are being used, i.e., 512-FFT for 5 MHz channel BW or less and 1024-FFT for 10 MHz channel BW or less. Any configuration shall use the 2048-FFT for at least one frame duration every one second.

[Add the following text in section 8.4.6.1.1 just before table 246]
For FFT size other than 2048-FFT, only the first k elements of table 246 shall be used to modulate the DL preamble sub-carriers, where k is the number of carries

[Add the following table in section 8.4.6.1.2]

Table 247— 2048-FFT OFDMA downlink carrier allocations

Parameter	Value	Comments
Number of DC Subcarriers	1	Index 1024
Number of Guard Subcarriers, Left	172	
Number of Guard Subcarriers, Right	173	
Number of Used Subcarriers (Nused)	1703	Number of all subcarriers used within a symbol, including all possible allocated pilots and the DC carrier.
Pilots		
VariableSet #0	24	0,72,144,216,288,360,432,504,576,648,720, 792,864,936,1008,1080,1152,1224,1296,1368, 1440,1512,1584,1656
ConstantSet #0	4	39,645,1017,1407
VariableSet #1	24	36,108,180,252,324,396,468,540,612,684,756, 828,900,972,1044,1116,1188,1260,1332,1404, 1476,1548,1620,1692
ConstantSet #1	4	261,,651,1143,1419
VariableSet #2	24	48,120,192,264,336,408,480,552,624,696,768,840, 912,984,1056,1128,1200,1272,1344,1416, 1488,1560,1632
ConstantSet #2	4	330,726,1155,1461
VariableSet #3	24	12,84,156,228,300,372,444,516,588,660,732, 804,876,948,1020,1092,1164,1236,1308,1380, 1452,1524,1596,1668
ConstantSet #3	4	342,849,1158,1530
VariableSet #4	24	24,96,168,240,312,384,456,528,600,672,744,816, 888,960,1032,1104,1176,1248,1320,1392,1464, 1536,1608,1680
ConstantSet #4	4	351,855,1185,1545
VariableSet #5	23	60,132,204,276,348,420,492,564,636,,708,780,852, 924,996,1068,1140,1212,1284,1356,1428,1500, 1572,1644
ConstantSet #5	4	522,918,1206,1701
Number of data subcarriers	1536	
Number of data subcarriers per subchannel	48	
Number of Subchannels	32	
PermutationBase		3, 18, 2, 8, 16, 10, 11, 15, 26, 22, 6, 9, 27, 20, 25, 1, 29, 7, 21, 5, 28, 31, 23, 17, 4, 24, 0, 13, 12, 19, 14, 30

Table 247a— 1024-FFT OFDMA downlink carrier allocations

<u>Parameter</u>	<u>Value</u>	Comments
Number of DC Subcarriers	<u>1</u>	<u>Index 512</u>
Number of Guard Subcarriers, Left	<u>86</u>	
Number of Guard Subcarriers, Right	<u>87</u>	
Number of Used Subcarriers (Nused)	<u>851</u>	Number of all subcarriers used within a symbol,
		including all possible allocated pilots and the DC carrier.
Pilots		
<u>VariableSet #0</u>	<u>12</u>	<u>0,72,144,216,288,360,432,504,576,648,720,</u> 792
ConstantSet #0	<u>2</u>	39,645
VariableSet #1	<u>12</u>	36,108,180,252,324,396,468,540,612,684,756,
		<u>828</u>
ConstantSet #1	<u>2</u>	<u>261, 651</u>
VariableSet #2	<u>12</u>	48,120,192,264,336,408,480,552,624,696,768,840
ConstantSet #2	<u>2</u>	<u>330,726</u>
<u>VariableSet #3</u>	<u>12</u>	12,84,156,228,300,372,444,516,588,660,732,
		<u>804</u>
ConstantSet #3	<u>2</u>	<u>342,848</u>
<u>VariableSet #4</u>	<u>12</u>	<u>24,96,168,240,312,384,456,528,600,672,744,816</u>
ConstantSet #4	<u>2</u>	<u>351,850</u>
<u>VariableSet #5</u>	<u>11</u>	60,132,204,276,348,420,492,564,636,708,780
ConstantSet #5	<u>1</u>	<u>522</u>
Number of data subcarriers	<u>768</u>	
Number of data subcarriers per	<u>48</u>	
subchannel		
Number of Subchannels	<u>16</u>	
<u>PermutationBase</u>		6, 14, 2, 3, 10, 8, 11, 15, 9, 1, 13, 12, 5, 7, 4, 0

Table 247b— 512-FFT OFDMA downlink carrier allocations

<u>Parameter</u>	<u>Value</u>	<u>Comments</u>
Number of DC Subcarriers	<u>1</u>	<u>Index 256</u>
Number of Guard Subcarriers, Left	<u>43</u>	
Number of Guard Subcarriers, Right	<u>43</u>	
Number of Used Subcarriers (Nused)	<u>426</u>	Number of all subcarriers used within a symbol, including all possible allocated pilots and the DC carrier.
<u>Pilots</u>		
<u>VariableSet #0</u>	<u>6</u>	<u>0,72,144,216,288,360</u>
ConstantSet #0	<u>1</u>	<u>39</u>
<u>VariableSet #1</u>	<u>6</u>	<u>36,108,180,252,324,396</u>
ConstantSet #1	<u>1</u>	<u>261</u>
<u>VariableSet #2</u>	<u>6</u>	<u>48,120,192,264,336,408</u>
ConstantSet #2	<u>1</u>	330
<u>VariableSet #3</u>	<u>6</u>	<u>12,84,156,228,300,372</u>
ConstantSet #3	1	<u>342</u>

<u>VariableSet #4</u>	<u>6</u>	24,96,168,240,312,384
ConstantSet #4	<u>1</u>	<u>351</u>
<u>VariableSet #5</u>	<u>6</u>	60,132,204,276,348
ConstantSet #5	<u>1</u>	<u>420</u>
Number of data subcarriers	<u>384</u>	
Number of data subcarriers per	<u>48</u>	
<u>subchannel</u>		
Number of Subchannels	<u>8</u>	
<u>PermutationBase</u>		<u>7,4,0,2,1,5,3,6</u>

Table <u>247c— 2048-FFT</u> OFDMA downlink carrier allocations

Parameter	Value	Comments
Number of DC Subcarriers	1	index 1024
Number of Guard Subcarriers, Left	183	
Number of Guard Subcarriers, Right	184	
Number of Used Subcarriers (Nused)	1681	Number of all
including all possible allocated pilots and		subcarriers used within
the DC carrier.		a symbol
renumbering sequence	6, 108, 37, 81, 31, 100, 42, 116, 32, 107,	used to renumber
	30, 93, 54, 78, 10, 75, 50, 111, 58, 106,	clusters before
	23, 105, 16, 117, 39, 95, 7, 115, 25, 119,	allocation to
	53, 71, 22, 98, 28, 79, 17, 63, 27, 72, 29,	subcchannels:
	86, 5, 101, 49, 104, 9, 68, 1, 73, 36, 74,	
	43, 62, 20, 84, 52, 64, 34, 60, 66, 48, 97,	
	21, 91, 40, 102, 56, 92, 47, 90, 33, 114,	
	18, 70, 15, 110, 51, 118, 46, 83, 45, 76,	
	57, 99, 35, 67, 55, 85, 59, 113, 11, 82,	
	38, 88, 19, 77, 3, 87, 12, 89, 26, 65, 41,	
	109, 44, 69, 8, 61, 13, 96, 14, 103, 2, 80,	
	<u>24, 112, 4, 94, 0</u>	
Number of carriers per cluster	14	Number of all
-		subcarriers used within
		a symbol,
Number of clusters	120	
Number of carriers per subchannel	24	
Number of subchannels	60	
PermutationBase12 (for 12 subchannels)	6,9,4,8,10,11,5,2,7,3,1,0	
PermutationBase8 (for 8 subchannels)	7,4,0,2,1,5,3,6	

[Add the following table in section 8.4.6.1.2]

<u>Parameter</u>	<u>Value</u>	<u>Comments</u>
Number of DC Subcarriers	1	<u>index 512</u>
Number of Guard Subcarriers, Left	<u>91</u>	
Number of Guard Subcarriers, Right	<u>92</u>	
Number of Used Subcarriers (Nused)	<u>841</u>	Number of all
including all possible allocated pilots and		subcarriers used within
the DC carrier.		<u>a symbol</u>
renumbering sequence	6, 48, 37, 21, 31, 40, 42, 56, 32, 47, 30,	<u>used to renumber</u>
	33, 54, 18, 10, 15, 50, 51, 58, 46, 23, 45,	<u>clusters</u> <u>before</u>
	16, 57, 39, 35, 7, 55, 25, 59, 53, 11, 22,	<u>allocation</u> to
	38, 28, 19, 17, 3, 27, 12, 29, 26, 5, 41,	subchannels:
	49, 44, 9, 8, 1, 13, 36, 14, 43, 2, 20, 24,	
N. I. C. i. I.	52, 4, 34, 0	NT 1 C 11
Number of carriers per cluster	<u>14</u>	Number of all
		subcarriers used within
Number of alustons	60	<u>a symbol</u> ,
Number of clusters	<u>00</u>	
Number of carries per subchannel	24	
Number of subchannels	30	
itamoer of subchamicis	<u> </u>	
PermutationBase6 (for 6 subchannels)	3,2,6,4,5,1	
PermutationBase4 (for 4 subchannels)	3,4,2,1	

Table 247e— 512-FFT OFDMA downlink carrier allocations

<u>Parameter</u>	<u>Value</u>	<u>Comments</u>
Number of DC Subcarriers	1	<u>index 256</u>
Number of Guard Subcarriers, Left	<u>45</u>	
Number of Guard Subcarriers, Right	<u>46</u>	
Number of Used Subcarriers (Nused)	<u>421</u>	Number of all
including all possible allocated pilots and		subcarriers used within
the DC carrier.		<u>a symbol</u>
renumbering sequence	12, 13, 26, 9, 5, 15, 21, 6, 28, 4, 2, 7,	<u>used</u> to renumber
	10, 18, 29, 17, 16, 3, 20, 24, 14, 8, 23,	<u>clusters</u> <u>before</u>
	<u>1, 25, 27, 22, 19, 11, 0</u>	<u>allocation</u> to
		subchannels:
Number of carriers per cluster	<u>14</u>	Number of all
		subcarriers used within
		<u>a symbol,</u>
Number of clusters	<u>30</u>	
Number of carries per subchannel	<u>24</u>	

Number of subchannels	<u>15</u>	
PermutationBase6 (for 6 subchannels)	3,1,2	
PermutationBase4 (for 4 subchannels)	<u>3,4,2,1</u>	

[Add the following table in section 8.4.6. 2]

UL parameters for the 2K mode are reproduced here (assuming some changes accepted during the letter ballot)

Parameter	Value	Comments
Number of DC Subcarriers	1	index 1024
Number of Guard Subcarriers, Left	183	
Number of Guard Subcarriers, Right	184	
Number of Used Subcarriers (Nused) including all possible allocated pilots and the DC carrier.	1681	Number of all subcarriers used within a symbol
PermutationBase0	12, 26, 66, 18, 33, 15, 65, 5, 6, 19, 46, 42, 61, 24, 40, 35, 41, 48, 68, 44, 16, 7, 32, 2, 38, 9, 58, 56, 30, 47, 55, 17, 20, 59, 69, 57, 43, 3, 51, 36, 54, 4, 64, 63, 50, 23, 27, 8, 45, 29, 34, 28, 21, 1, 25, 53, 62, 37, 67, 31, 60, 11, 13, 39, 22, 14, 52, 49, 10, 0,	used to allocate tiles to subchannels
Number of carriers per tile	4	Number of all subcarriers used within a tile
Number of tiles	420	
Number of tiles per subchannel	6	
Number of subchannels	70	

A table for a 1K FFT UL:

<u>Parameter</u>	Value_	<u>Comments</u>
Number of DC Subcarriers	1	<u>index 512</u>
Number of Guard Subcarriers, Left	<u>91</u>	
Number of Guard Subcarriers, Right	<u>92</u>	
Number of Used Subcarriers (Nused)	<u>841</u>	Number of all
including all possible allocated pilots and		subcarriers used within
the DC carrier.		<u>a symbol</u>
PermutationBase0	11,19,12,32,33,9,30,7,4,2,13,8,17,23,27,	used to allocate tiles
	5,15,34,22,14,21,1,0,24,3,26,29,31,20,25,	to subchannels
	<u>16,10,6,28,18</u>	
Number of carriers per tile	<u>4</u>	Number of all
		subcarriers used within
		<u>a tile</u>

Number of tiles	<u>210</u>	
Number of tiles per subchannel	<u>6</u>	
Number of subchannels	<u>35</u>	

A table for a 512 FFT UL:

<u>Parameter</u>	Value_	<u>Comments</u>
Number of DC Subcarriers	1	<u>index 512</u>
Number of Guard Subcarriers, Left	<u>51</u>	
Number of Guard Subcarriers, Right	<u>52</u>	
Number of Used Subcarriers (Nused)	<u>409</u>	Number of all
including all possible allocated pilots and		subcarriers used within
the DC carrier.		<u>a symbol</u>
PermutationBase0	11,15,10,2,12,9,8,14,16,4,0,5,13,3,6,7,1	used to allocate tiles
		to subchannels
Number of carriers per tile	<u>4</u>	Number of all
		subcarriers used within
		<u>a tile</u>
Number of tiles	<u>102</u>	
Number of tiles per subchannel	<u>6</u>	
Number of subchannels	<u>17</u>	

5 Conclusion

The performance of the IEEE802.16d OFDMA PHY layer has been presented, the performance achieved for high bandwidth are very good and deteriorated for lower bandwidth.

A simple and straight forward way has been shown to add a 1K and 512 FFT sizes to the OFDMA PHY layer to cope with high mobility demands when low channel bandwidth are allocated.

It is recommended that the IEEE802.16e WG will consider these changes to be added to the current draft.